Hypertrophic growth of cardiac myocytes is a common result of different physiological and pathological stresses. It remains a subject of considerable debate whether hypertrophy is a compensatory process that becomes mal-adaptive in diseased hearts or a direct contributor to the pathogenesis of heart failure. Nevertheless, many types of stressors, mechanical or neural/hormonal, induce hypertrophy and this phenotype is an independent risk factor in heart failure. Therefore, much effort has been devoted to uncovering mechanisms of hypertrophic growth, with the expectation that intercepting this process clinically may halt the disease progression of heart failure. It is firmly established that hypertrophic growth involves alterations in gene regulation, excitation–contraction coupling, extracellular matrix remodeling, and energy metabolism.

Among molecules known to regulate hypertrophic gene expression, histone deacetylases (HDACs) have been identified as key players in the pathological setting. HDACs function as corepressors by targeted modification of local accessibility of chromatin to transcriptional machinery. HDACs are counteracted by histone acetyltransferases (HATs) to achieve dynamic regulation of gene expression depending on prevailing cellular stress and/or developmental conditions. There are 3 classes (I, II, and IV) of “classic” HDACs, consisting of 11 family members in addition to 7 sirtuin family members. Among the classic HDACs, class II HDAC members (HDAC4, -5, -7, and -9) have all been shown to negatively regulate hypertrophy by repressing MEF/GATA/NFAT-mediated gene expression. Interestingly, such negative regulatory activity is acetylase activity independent. In contrast, a recent report implicated the class I HDAC member HDAC2 as a positive regulator of hypertrophic growth. The diversity of anti- versus prohypertrophic functions among different HDAC family members underscores some of the initial controversies with regard to the effects of HDAC inhibitors on the treatment of cardiomyopathy. Although many of these inhibitors have broad spectrum target specificity, it is possible that their effects selectively modulate individual isoforms, such as HDAC2. In addition to the functional complexity of HDAC isoforms, the mechanisms involved in their activation appear to be very different as well. Class II HDACs are phosphorylated at the onset of hypertrophic stimulation by a number of prohypertrophic kinases, including protein kinase C, protein kinase D, calmodulin kinase, and G protein–coupled receptor kinase 5. The phosphorylated class II HDACs are subsequently translocated out of the nucleus by 14-3-3 proteins, resulting in the release of transcriptional repression of hypertrophic genes. In addition, oxidative modification of type II HDAC is also a critical aspect of their nuclear export, leading to hypertrophic gene induction. In contrast, the mechanisms of class I HDAC activation in the heart are unclear.

In this issue of Circulation Research, Kee et al have investigated this important question and identified an unexpected new player, inducible heat shock protein Hsp70, as a regulator of HDAC2 activity. First, the authors demonstrate that various hypertrophic stimuli (including swimming, aortic banding, isoproterenol, phenylephrine, and angiotensin II) selectively induce HDAC2 among other class I HDAC isoforms, which is correlated with selective induction in Hsp70. This activation occurs in animals and isolated cells and precedes hypertrophic growth; furthermore, Hsp70 leads to HDAC2 activation in cell systems and induces hypertrophic gene markers and cell matrix reorganization. Having established the activation profiles of Hsp70 and HDAC2 in various settings of hypertrophy, the authors then make the novel observation that the hypertrophic growth and HDAC2 activation following stress is dependent on Hsp70 using knockout mice (cell studies suggest that Hsp70 delivery induces cell growth in cardiac myocytes). In agreement with these data, Hsp70 and HDAC2 interact directly in vitro and immunoprecipitate from cell lysates, and this interaction appears to be selective for Hsp70 versus other isoforms tested. Hypertrophic stimulation triggers transient induction of Hsp70 and enhanced interaction with HDAC2. Although the mechanisms are unclear, this interaction appears to induce HDAC2 enzymatic activity without changes of HDAC2 protein expression, phosphorylation, or intracellular localization. Almost as an aside, the authors also show that heat stress to the animal is itself sufficient to induce hypertrophy and this response is aberrant in the Hsp70-null animals. Although Hsp70 was originally discovered as a protein induced by heat shock, subsequent studies have demonstrated its activation in response to a host of cellular insults, including mechanical, ischemia/hypoxia, and neural/hormonal. Therefore, this generic stress response molecule may also have a highly

A New (Heat) Shocking Player in Cardiac Hypertrophy

Thomas M. Vondriska, Yibin Wang

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Division of Molecular Medicine, Departments of Anesthesiology, Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles.

Correspondence to Yibin Wang, PhD, Division of Molecular Medicine, Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine at UCLA, Room BH 569, CSH, Los Angeles, CA 90095. E-mail yibinwang@mednet.ucla.edu

(Circ Res. 2008;103:1194-1196.)

© 2008 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/CIRCRESAHA.108.189118

1194
specific role in regulating cardiac hypertrophy under pathological stimulations (Figure). By revealing a novel aspect of HDAC regulation in hypertrophy, this study raises a number of questions. First, what is the role of Hsp70 in HDAC2 signaling? It appears not to be the regulation of HDAC2 localization or through direct interactions, as well as protein interaction (and perhaps imaging) approaches in the whole cell/organ. Finally, HDACs have nonhistone targets that potentially play important roles in the development of hypertrophy. Indeed, in addition to hypertrophy, contractile dysfunction and remodeling of the extracellular matrix are also observed in HDAC2 transgenic hearts. The role of Hsp70 in these phenotypic manifestations remains unknown.

Resolution of these and other critical uncertainties must precede evaluation of the clinical value of Hsp70 in hypertrophy or other cardiac disease. The present study identifies a new player in cardiac hypertrophy but, moreover, underscores the essential role of isoform-specific protein interactions in signaling specificity. Until we know the proteins interacting with HDAC2 (and Hsp70) in the normal and diseased heart, targeted modulation of their function will lack the context dependency required for fidelity. Furthermore, this study highlights the underlying challenges to design therapeutic strategies using HDAC2 or Hsp70 as potential targets. Hsp70 may be both protective and deleterious by virtue of interacting with different partners. On the other hand, HDAC2 appears to be the only HDAC family member examined thus far that has strong prohypertrophic activity. Therefore, any manipulation of Hsp70 or HDAC activity using small molecules must consider specificity in addition to potency to achieve selective enhancement of beneficial effects while minimizing the damaging ones.

Sources of Funding

T.M.V. is supported by NIH grant HL087132. Y.W. is supported by NIH grants HL062311 and HL080111 and is an Established Investigator of the American Heart Association.

Disclosures

None.

References

5. Hamamori Y, Schneider MD. HATs off to Hop: recruitment of a class I histone deacetylase incriminates a novel transcriptional pathway that opposes cardiac hypertrophy. *JAHA.* 2003;112:824–826.

Key Words: cardiac hypertrophy Hsp70 HDAC2 gene regulation
A New (Heat) Shocking Player in Cardiac Hypertrophy

Thomas M. Vondriska and Yibin Wang

Circ Res. 2008;103:1194-1196
doi: 10.1161/CIRCRESAHA.108.189118

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/103/11/1194

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/