Disrupted Intercalated Discs
Is Kindlin-2 Required?

Cathy J. Hatcher, Craig T. Basson

Intermediate filaments are cytoskeletal structures that maintain the structural and mechanical integrity of cells, tissues, and organs. These filaments are associated with the nuclear surface but extend out into the cytoplasm and interact with other cytoskeletal elements and cytoplasmic organelles. Eventually, their impingement on the plasma membrane in certain tissues allows them to be tethered by specialized membrane structures, such as hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. At an intercalated disc, the cell membranes of 2 adjacent cardiomyocytes are extensively intertwined and bound together by gap junctions and desmosomes. These connections help stabilize the positions of the cells relative to each other and also help maintain the 3D structural integrity of the tissue. Thus, the intercalated discs ensure proper function of the heart with efficient ejection of blood with each contraction.

Kindlin-2, a member of the kindlin family of focal adhesion proteins, is expressed in cardiac muscle and is enriched at intercalated discs and costameres. Kindlin-1 and kindlin-2 have been shown to play an essential role in integrin-mediated adhesion and spreading. Kindlin-2 can interact with integrin-linked kinase (ILK) and is also able to bind migfilin, a LIM domain–containing protein capable of binding Filamin. In this issue of Circulation Research, Dowling et al demonstrate a novel role for kindlin-2 in embryonic development as well as cardiac development and function. Complete loss of murine kindlin-2 produces embryonic lethality by embryonic day 7.5. These findings demonstrate the essential role of kindlin-2 in early embryogenesis, but given the early lethality of the mice, the contribution of kindlin-2 to murine cardiac morphogenesis remains unknown. Antisense knockdown of kindlin-2 expression in the zebrafish sheds further light on the role of kindlin-2 in cardiac development. Dowling et al were able to show that knockdown of z-kindlin-2 induces abnormalities in zebrafish cardiac structure and function. Kindlin-2–deficient zebrafish display ventricular hypoplasia, abnormalities in ventricular contractility, and abnormal cardiac morphology. At the microscopic level, these mutant hearts also display disrupted intercalated discs and disorganized skeletal myofibrils with apparent vacuoles. Thus, these studies support the requirement of kindlin-2 in the establishment of the intercalated disc and the attachment of myofibrils to membrane junctions in both cardiac and skeletal muscles and imply an important role for kindlin-2 in maintenance of normal cardiac function, myofibrillar organization, and cytoskeletal structure. Given the role of kindlin-2 in organization of intercalated discs and the association of intercalated discs with cardiac disease, it is intriguing to speculate that naturally occurring mutations in KIND2 may produce human cardiomyopathies.

Junctional complexes must be properly organized in the intercalated disc to mediate normal electromechanical coupling between cardiomyocytes. The expression and distribution of junctional components are often perturbed in cardiovascular disease. Among these components, gap junctions, some of which localize to intercalated discs, play a key role in electrically coupling the myocardium. Tissue-specific mutations in GJA5, the gene encoding the connexin 40 gap junction, cause altered electric coupling and lead to arrhythmogenesis. Because ions, small molecules, and even small peptides are capable of traversing these junctions, disorganization of the intercalated discs may make gap junctions more susceptible to improper impulse propagation, as well as intercellular transfer of molecules. Another junctional component, the adherens junctions, mediates strong homophilic cell–cell adhesion via linkage to the actin cytoskeleton. Of these adherens junctions, the cadherin family of proteins is an integral component. These calcium-dependent proteins maintain electromechanical coupling between cells. Cardiac-specific loss of murine N-cadherin leads to a modest dilated cardiomyopathy with impaired cardiac function before sudden cardiac death. In these animals, myofibril organization is relatively normal with the exception of compression of the sarcomeres. Mice haploinsufficient for N-cadherin have an increased susceptibility to induced arrhythmias and display a reduction in Cx43-containing gap junctions. These observations suggest that disturbances in one intercalated disc protein can affect the expression or distribution of surrounding disc proteins and compound the deleterious effects. The existence of mutations in genes encoding intercalated disc proteins adds to the speculation that mutations in KIND2 may contribute to human cardiac disease.
Aberrations in kindlin-2 activity may potentially contribute to the pathogenesis of cardiomyopathy via kindlin-2 interaction with integrin signaling. In both Caenorhabditis elegans and the mouse, kindlin-2 interacts with ILK. ILK binds to the cytoplasmic tail of β integrins, thus linking cell–extracellular matrix interactions to signals regulating cytoskeletal remodeling and cellular processes including growth, proliferation, survival, and differentiation. ILK is quite abundant in the heart and is believed in regulating cytoskeletal remodeling and cellular processes linking cell–extracellular matrix interactions to signals.

In summary, the findings of Dowling et al provide novel linkage among cardiomyocyte structure, heart development, and cardiac physiology. Future studies will likely shed light on the details of a variety of kindlin-2–dependent events in the heart. The identification of a pleiotropic role of kindlin-2 in cardiac structure and function promotes novel hypotheses about the pathogenesis of cardiovascular disease and fostering new treatment strategies to promote cardiac repair.

Sources of Funding
C.J.H. is supported by NIH grant K01HL080948, and C.T.B. is supported by the Santi Cardiovascular Fund and is an Established Investigator of the American Heart Association.

Disclosures
None.

References


Key Words: intercalated discs ■ kindlin-2 ■ cardiomyopathy ■ integrin ■ cardiac development
Disrupted Intercalated Discs: Is Kindlin-2 Required?
Cathy J. Hatcher and Craig T. Basson

Circ Res. 2008;102:392-394
doi: 10.1161/CIRCRESAHA.108.172171
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/102/4/392

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/