Thromboxane Receptor Activates the AMP-Activated Protein Kinase in Vascular Smooth Muscle Cells via Hydrogen Peroxide

Miao Zhang, Yunzhou Dong, Jian Xu, Zhonglin Xie, Yong Wu, Ping Song, Melissa Guzman, Jiliang Wu, Ming-Hui Zou

Abstract—Thromboxane A$_2$ receptor (TPr) stimulation induces cellular hypertrophy in vascular smooth muscle cells (VSMCs); however, regulation of VSMC hypertrophy remains poorly understood. Here we show that TPr stimulation activates AMP-activated kinase (AMPK), which in turn limits TPr-induced protein synthesis in VSMCs. Exposure of cultured VSMCs to either TPr agonists, IBOP and U46619, or exogenous hydrogen peroxide (H$_2$O$_2$) caused time- and dose-dependent AMPK activation, as evidenced by increased phosphorylation of both AMPK-Thr172 and acetyl-coenzyme A carboxylase–Ser79, a downstream enzyme of AMPK, whereas SQ29548, a selective TPr antagonist, significantly attenuated TPr-enhanced AMPK activation. In parallel, both IBOP and U46619 significantly increased the production of reactive oxygen species such as H$_2$O$_2$. Furthermore, adenoviral overexpression of catalase (an H$_2$O$_2$ scavenger) abolished, whereas superoxide dismutase (which catalyzes H$_2$O$_2$ formation) enhanced, IBOP-induced AMPK activation, suggesting that TPr-activated AMPK was mediated by H$_2$O$_2$. Consistently, exposure of VSMCs to either TPr agonists or exogenous H$_2$O$_2$ dose-dependently increased the phosphorylation of LKB1 (at serines 428 and 307), an AMPK kinase, as well as coimmunoprecipitation of AMPK with LKB1. In addition, direct mutagenesis of either Ser428 or Ser307 of LKB1 into alanine, like the kinase-dead LKB1 mutant, abolished both TPr-stimulated AMPK activation and coimmunoprecipitation. Finally, genetic inhibition of AMPK significantly accentuated IBOP-enhanced protein synthesis, whereas adenoviral overexpression of constitutively active AMPK abolished IBOP-enhance protein synthesis in VSMCs. We conclude that TPr stimulation triggers reactive oxygen species–mediated LKB1-dependent AMPK activation, which in return inhibits cellular protein synthesis in VSMCs. (Circ Res. 2008;102:328-337.)

Key Words: thromboxane receptor ■ AMPK ■ oxidative stress ■ vascular smooth muscle cells
mediated signaling is not restricted to pathologic events. Indeed, angiotensin II and platelet-derived growth factor are important mediators of vascular signals that, in part, depend on ROS as mediators of signal transduction. Recent evidence from our group suggests that both hypoxia-reoxygenation and metformin requires peroxynitrite (ONOO\(^{-}\)) as a signaling molecule to activate AMPK in endothelial cells. In addition, AMPK is activated by exogenous hydrogen peroxide (H\(_2\)O\(_2\)).

Thromboxane (Tx)A\(_2\) is a product of arachidonic acid through the cyclooxygenase pathway and is synthesized after activation of a variety of cells, including platelets, vascular smooth muscle cells (VSMCs), endothelial cells, and macrophages. TxA\(_2\) exerts potent biological activity, causing platelet aggregation and secretion, vasoconstriction, and mitogenesis and stimulating hypertrophy in VSMCs. These biological effects are the consequence of the interaction of TxA\(_2\) with membrane receptors (TxA\(_2\) receptors [TPrs]), which belong to the heptahelical superfamily of G protein-coupled receptors. Although not completely understood, there is evidence that TxA\(_2\)-induced hypertrophy and proliferation appear to involve the activation of mitogen-activated protein kinase and p70 S6 kinase. Interestingly, TxA\(_2\) has been found to promote the formation of superoxide anions in pulmonary artery and cultured cells. However, the physiological role of TPr-derived superoxide anions remains unknown.

Therefore, we hypothesize that AMPK may respond to TxA\(_2\)-induced ROS production. The aim of the present study was to elucidate the mechanisms by which TPr triggers AMPK activation and the physiological functions of AMPK in cultured rat VSMCs.

Methods and Materials

An expanded Materials and Methods section is available in the online data supplement at http://circres.ahajournals.org. Briefly, rat VSMCs were cultured from rat thoracic aortas. VSMCs were stimulated by the TxA\(_2\) mimetic IBOP or U46619. Phosphorylations of LKB1, AMPK, and acetyl-coenzyme A carboxylase (ACC) after stimulation were detected using Western blotting, and intracellular ROS production was monitored by 2\,-7\,-dichlorodihydrofluorescein (DCF). [\(^{3}\)H]Leucine incorporation was performed to investigate the effects of AMPK on IBOP-induced protein synthesis. After infection by adenoviral vectors Ad-AMPK-CA, Ad-AMPK-DN, or Ad–green fluorescent protein (Ad-GFP), VSMCs were treated with IBOP for 5 or 48 hours, and then the protein synthesis was assessed by \(^{3}\)H-leucine (1 \(\mu\)Ci/mL) incorporation.

Results

Thromboxane Mimetics Activate AMPK in Rat VSMCs

Because activation of AMPK requires the phosphorylation of Thr172 in the activation loop of \(\alpha\)1 and \(\alpha\)2 subunits, AMPK activity was determined in Western blots by monitoring both phosphorylated AMPK-Thr172 and ACC-Ser79. As
shown in Figure 1a and 1b, exposure of VSMCs to IBOP (0.001 to 1 μmol/L), a TxA2 mimetic, for 10 minutes dose-dependently increased the phosphorylation of both AMPK-Thr172 and ACC-Ser79, implying that IBOP activated AMPK in VSMCs. We also included 2 other structurally related TxA2 mimetics, U46619 and carboxy-TxA2. As depicted in Figure 1c and 1d, exposure of VSMCs to U46619 for 10 minutes, similar to IBOP, dose-dependently increased both AMPK-Thr172 and ACC-Ser79. Exposure of VSMCs to carboxy-TxA2 also increased the phosphorylation of both AMPK-Thr172 and ACC-Ser79 in a dose-dependent manner (Figure 1a in the online data supplement). Furthermore, concentrations as low as 0.1 μmol/L for both IBOP and U46619, which are pathologically relevant,38 were found to increase AMPK-Thr172 by at least 2-fold, thereby reaching levels similar to that caused by AICAR (1 mmol/L, 1 hour) (supplemental Figure Ib).

The activation of AMPK by a TxA2 mimetic was also time-dependent. Peak phosphorylation of AMPK was reached between 5 and 15 minutes after stimulation with either IBOP (1 μmol/L) or U46619 (1 μmol/L) for 5, 15, and 30 minutes. Data are means±SEM (n=4). *P<0.05, †P<0.01, treated vs control cells. VSMCs were treated with either IBOP (1 μmol/L) or U46619 (1 μmol/L) for 24 hours (c). TPr was detected at 55 and 64 kDa (Cayman’s TPr polyclonal antibody detects the TPr receptor at 55 and 64 kDa according to the production information) via Western blotting (d). The TPr antagonist SQ29548 abolishes TPr-induced AMPK activation. Confluent VSMCs were preincubated with or without the TPr antagonist SQ29548 at 1 μmol/L or 10 μmol/L for 30 minutes before being exposed to IBOP (1 μmol/L) for either 5 or 15 minutes. The blot is representative of 3 blots from 3 individual experiments.

Figure 2. TxA2 mimetics activate AMPK via TPr in VSMCs. TPr activation causes a time-dependent AMPK activation in VSMCs (a and b). VSMCs were treated with either IBOP (1 μmol/L) or U46619 (1 μmol/L) for 5, 15, and 30 minutes. Data are means±SEM (n=4).

We first determined whether TPr agonists altered TPr in VSMCs. TPr expression was determined by Western blotting using a specific antibody. As shown in Figure 2c, exposure of VSMCs to either IBOP or U46619 for 24 hours (c). TPr was detected at 55 and 64 kDa (Cayman’s TPr polyclonal antibody detects the TPr receptor at 55 and 64 kDa according to the production information) via Western blotting (d). The TPr antagonist SQ29548 abolishes TPr-induced AMPK activation. Confluent VSMCs were preincubated with or without the TPr antagonist SQ29548 at 1 μmol/L or 10 μmol/L for 30 minutes before being exposed to IBOP (1 μmol/L) for either 5 or 15 minutes. The blot is representative of 3 blots from 3 individual experiments.

We further determined whether the activation of AMPK caused by TxA2 mimetics was mediated by TPr. To this end, SQ29548, a potent TPr antagonist, was preincubated with VSMCs before the addition of a TPr mimetic. As depicted in Figure 2d, SQ29548 (1 or 10 μmol/L), which did not alter the basal level of AMPK-Thr172, markedly attenuated IBOP-enhanced AMPK-Thr172 phosphorylation. Similarly, S18886, a structurally unrelated TPr antagonist, like SQ29548, also blunted IBOP-induced AMPK-Thr172 (supplemental Figure IIc). Taken together, these results strongly suggest that AMPK activation is TPr-dependent.

TPr Increases ROS Generation in VSMCs
There is evidence that TPr activation promotes superoxide production in both pig pulmonary artery36 and corpus caver-
nosal smooth muscle cells. We next tested whether TPr increased ROS production in cultured aortic VSMCs. As shown in Figure 3a, treatment of VSMCs with either IBOP (1 μmol/L) or U46619 (1 μmol/L) markedly increased ROS release 10 minutes after incubation, as detected by H2O2-sensitive DCF fluorescence.

TPr-Induced AMPK Activation Is H2O2-Dependent

We next determined whether TPr-enhanced H2O2 production contributes to TPr-dependent AMPK activation in VSMCs. To this end, catalase, which can detoxify H2O2, was overexpressed by adenoviruses encoding catalase. Adenoviral infection of catalase in VSMCs greatly increased catalase expression and catalase activity (Figure 3b). As expected, adenoviral overexpression of catalase abolished IBOP-enhanced phosphorylation of both AMPK Thr172 and ACC Ser79 (Figure 3c). On the other hand, adenoviral overexpression of superoxide dismutase (SOD1) increased SOD1 expression (Figure 3b), which presumably results in enhanced H2O2 production, significantly increased IBOP-enhanced phosphorylation of both AMPK and ACC (Figure 3c). Because SOD1 enhanced, whereas catalase suppressed, the effects of IBOP on AMPK, these results imply that IBOP-activated AMPK is H2O2-dependent.

Activation of AMPK by Exogenous H2O2 in VSMCs

Earlier studies have demonstrated that exogenous H2O2 activates AMPK; therefore, we next investigated whether H2O2 could activate AMPK in VSMCs. As depicted in Figure 3d, exposure of VSMCs to H2O2 concentrations indicated for 10 minutes increases AMPK activation in VSMCs (d). Data are means±SEM (n=3). **P<0.01, treated vs control cells.

TPr-Induced AMPK Activation Is AMP-Independent

AMPK is a stress-activated protein kinase that works as a metabolic sensor of cellular AMP/ATP levels. We next assessed whether AMPK activation by TPr was attributable to alterations of intracellular AMP, ADP, and ATP levels in VSMCs. As shown in supplemental Figure IIIa, neither IBOP nor U46619 treatments (1 μmol/L, 10 minutes, respectively) changed the cellular levels of AMP, ADP, and ATP. Furthermore, the ratios of AMP-to-ATP remained unchanged in VSMCs exposed to either IBOP or U46619 (supplemental Figure IIIb). These results suggest that TPr-activated AMPK is independent of AMP/ATP ratios in VSMCs.
TPr-Induced AMPK Activation Is LKB1-Dependent

There is evidence that the tumor suppressor LKB1 acts as a major upstream kinase for AMPK. We next investigated whether LKB1 was required for TxA2-enhanced activation of AMPK. As shown in Figure 4a and 4b, exposure of VSMCs to either IBOP (1 μmol/L) or U46619 (1 μmol/L) time-dependently increased the phosphorylation of LKB1 at Ser428, a phosphorylation site that may play a crucial role in regulating AMPK activation. IBOP treatment significantly increased LKB1-Ser428 phosphorylation as early as 1 minute following exposure. IBOP also increased LKB1-Ser307 phosphorylation (Figure 4c). In parallel with AMPK-Thr172 phosphorylation, LKB1-Ser307 phosphorylation reached a peak at 10 minutes and then returned to basal levels within 30 minutes.

As seen in AMPK-Thr172 phosphorylation, overexpression of SOD1 significantly enhanced the phosphorylation of LKB1-Ser428, whereas overexpression of catalase blunted IBOP-induced LKB1-Ser428 phosphorylation (Figure 5a). In addition, exposure of VSMCs to exogenous H2O2 for 10 minutes also increased LKB1 Ser428 phosphorylation (Figure 5b). Taken together, these results suggest that TPr, via H2O2, increases LKB1 phosphorylation at both Ser428 and Ser307.

Phosphorylation of Both Ser428 and Ser307 of LKB1 Is Required for TPr-Stimulated AMPK Activation

Our previous studies have demonstrated that Ser428 of LKB1 is required for ONOO−-enhanced AMPK activation.69 Ser307 of LKB1 is also required for LKB1-dependent AMPK activation (Z. Xie, Y. Dong, J. Zhang, R. Scholz, D. Neumann, M.-H. Zov, unpublished data, 2007.). We next determined whether the phosphorylation of LKB1 at Ser307 and Ser428 is required for IBOP-induced AMPK activation. As shown in Figure 6a, IBOP did not activate AMPK either in LKB1-
Figure 6. TPr-induced AMPK activation requires LKB1. Activation of AMPK by IBOP is LKB1-dependent (a). LKB1-deficient A549 cells were transfected for 24 hours with LKB1 wild-type (WT) or LKB1 mutants (S307A, S428A, and D194A). The plasmid encoding LacZ.

(Continued)
deficient A549 cells or A549 cells transfected with the LKB1 mutants of D194A, S307A, or S428A but increased AMPK-Thr172 in A549 transfected with wild-type LKB1, implying that LKB1 is required for IBOP-induced AMPK activation. Furthermore, direct mutagenesis of either S307A or S428A, like the kinase-dead mutants (D194A), also abolished the effect of IBOP on AMPK in VSMCs (Figure 6b), suggesting that the phosphorylation of LKB1 at Ser307 and Ser428 was required for IBOP-enhanced AMPK phosphorylation.

TPR Increases the Association of AMPK With Its Upstream Kinase LKB1

We have reported previously that ONOO− activates AMPK by increasing the association of LKB1 with AMPK.30 Therefore, we next investigated whether TPR increases the interactions between AMPK and LKB1. LKB1 was first immunoprecipitated and then Western blotted for AMPK or vice versa. As shown in Figure 6c, IBOP significantly increased the coimmunoprecipitation of LKB1 with AMPK-α in VSMCs. However, overexpression of LKB1-S307A, LKB1-S428A, or LKB1-D194A abolished IBOP-enhanced coimmunoprecipitation of LKB1 with AMPK.

We next determined whether TPR agonists alter LKB1 activity by measuring LKB1 activity after treatment with IBOP or U46619. Neither IBOP nor U46619 altered LKB1 activity in VSMCs (supplemental Figure IV). These results suggest that TPR stimulation activated AMPK by increasing the association of AMPK with LKB1, which is an upstream kinase of AMPK, in VSMCs.

TPR-Induced AMPK Is Independent of CaMKK

Recent studies reveal that CaMKKβ serves as an AMPK kinase.15–17 We next determined whether CaMKKβ involved in the AMPK activation induced by TPR. Pharmacologic inhibition with the CaMKK inhibitor STO-609 (1 μmol/L) did not alter IBOP-induced AMPK phosphorylation in VSMCs (Figure 6d). Transfection of CaMKKβ-specific small interfering RNA but not scrambled small interfering RNA, which largely reduced the levels of CaMKKβ in VSMCs, significantly reduced the basal levels of AMPK-Thr172. However, inhibition of CaMKKβ with CaMKKβ-specific small interfering RNA did not affect IBOP-induced AMPK-Thr172 phosphorylation in VSMCs (Figure 6d). Taken together, these data suggest that activation of AMPK by TPR may be independent of CaMKKβ.

AMPK Inhibition Accentuates IBOP-Induced Protein Synthesis in VSMCs

Exposure of VSMCs to IBOP for 5 hours increased the phosphorylation of both AMPK at Thr172 and ACC at Ser79 (supplemental Figure IIa), implying that IBOP activated AMPK in VSMCs. Because earlier studies13,40 have shown that TPR stimulation induces hypertrophy in VSMCs, we first determined the role of AMPK activation in TPR-enhanced protein synthesis by assessing [3H]leucine incorporation in the VSMCs infected with adenoviruses encoded with either dominant-negative AMPK mutants (AMPK-DN) or constitutively active AMPK mutants (AMPK-CA) or GFP (supplemental Figure V) for 48 hours following 5 hours of IBOP treatment. Because IBOP significantly increased VSMC apoptosis (data not shown), VSMC protein synthesis was assessed by increased [3H]leucine (cmp) incorporation per cell. As expected, exposure of VSMCs to IBOP (1 μmol/L) for 5 hours significantly increased [3H]leucine incorporation per cell in GFP-infected VSMCs (Figure 7a), confirming that IBOP significantly increases protein synthesis in VSMCs. Importantly, inhibition of AMPK by overexpression of AMPK-DN (loss-of-function) further enhanced IBOP-induced protein synthesis (Figure 7a). On the other hand, overexpression of AMPK-CA (gain-of-function) abolished IBOP-induced protein synthesis (Figure 7a), suggesting that AMPK activation inhibited IBOP-induced protein synthesis in VSMCs.

We next assayed the long term effects of AMPK inhibition on IBOP-increased protein synthesis. As expected, IBOP significantly increased protein synthesis in VSMCs at 48 hours. Inhibition of AMPK by AMPK-DN overexpression significantly enhanced IBOP-induced protein synthesis in VSMCs (by 2-way ANOVA; Figure 7b). Taken together, these results suggest that AMPK inhibition enhances IBOP-induced VSMC protein synthesis.

Discussion

AMPK is a serine/threonine protein kinase and a member of the Snf1/AMPK protein kinase family. It is known that AMPK activity is stimulated by an increase in the intracellular AMP-to-ATP ratios in response to stresses such as exercise, hypoxia, oxidant stress, and glucose deprivation. Here we demonstrate TPR-dependent AMPK activation. Exposure of VSMCs to TPR stimulation caused dose- and time-dependent activation of AMPK. In parallel, both IBOP and U46619 increased the production of ROS, as detected by DCF. Furthermore, exogenous H2O2 increased the phosphorylation of AMPK, as seen in NIH 3T3 cells and rat VSMCs,6,28 as well as LKB1 phosphorylation. Moreover, inhibition of H2O2 production by overexpression of catalase (promoting the conversion of H2O2 to water and molecular...
IBOP treatment increased AMPK Thr172 phosphorylation in VSMCs. Confluent VSMCs infected with adenovirus of either GFP or AMPK-DN for 48 hours were treated for 48 hours with IBOP (1 μmol/L) or vehicle. Two-way ANOVA indicated significant effect of IBOP treatment (\(P,<0.01\)) and AMPK-DN transfection (\(P,<0.01\)) for leucine incorporation. Interaction effect between IBOP and AMPK-DN transfection approached significance (\(P,<0.05\)). Data are means ± SEM (n = 4). ◆\(p,<0.01\), GFP vs GFP plus IBOP; ▼\(p,<0.01\), AMPK-DN vs AMPK-DN plus IBOP; ‡\(p,<0.05\), AMPK-DN plus IBOP vs GFP plus IBOP; †\(p,<0.01\), AMPK-DN vs AMPK-DN plus IBOP; †\(p,<0.01\), AMPK-DN plus IBOP vs GFP plus IBOP.

Figure 7. Activation of AMPK by IBOP limits cellular protein synthesis in VSMCs. a, AMPK-dependent inhibition of protein synthesis in 5-hour IBOP-treated VSMCs. Forty-eight hours after having been infected with GFP, AMPK-DN, or AMPK-CA adenoviral vectors, VSMCs were treated for 5 hours with IBOP (1 μmol/L) or vehicle. Protein synthesis was assayed by \(^{3}H\)-leucine incorporation, as described in Materials and Methods. At same time, the cell number was counted using a hemocytometer. VSMC protein synthesis was calculated by dividing the total \(^{3}H\)-leucine (cmp) by the number of cells in each well and the vehicle treated GFP was used as 100%. Two-way ANOVA indicated significant effect of IBOP (\(P,<0.01\)) for leucine incorporation and effect of AMPK mutation (\(P,<0.01\)) for leucine incorporation. Interaction effect between IBOP and AMPK mutation approached significance (\(P,<0.05\)). Data are means ± SEM (n = 4). ◆\(p,<0.01\), GFP vs GFP plus IBOP; ▼\(p,<0.01\), AMPK-DN vs AMPK-DN plus IBOP; ‡\(p,<0.05\), AMPK-DN plus IBOP vs GFP plus IBOP; †\(p,<0.01\), AMPK-DN vs AMPK-DN plus IBOP; †\(p,<0.01\), AMPK-DN plus IBOP vs GFP plus IBOP.

Another important finding in the present study is that both Ser428 and Ser307 of LKB1 were required for both TPr- and H2O2-stimulated AMPK activation. The key evidence can be summarized as follows. First, both IBOP and U46619 increased the phosphorylation of LKB1 at Ser428 and Ser307, and according to a previous study in this laboratory,39 the phosphorylation site Ser428 of LKB1 was required for both TPr- and H2O2-stimulated AMPK activation. Second, IBOP did not induce AMPK activation in LKB1-deficient A549 cells, whereas IBOP increased AMPK Thr172 phosphorylation in VSMCs. These results suggest that activation of AMPK by TxA\(_{2}\) is dependent on LKB1. Third, mutation of Ser307 (S307A) or Ser428 (S428A) in VSMCs and A549 cells abolished IBOP-enhanced AMPK activation, implying important roles of Ser307 and Ser428 phosphorylation in the regulation of AMPK. These results are further corroborated by the fact that neither IBOP nor U46619 treatments changed the cellular AMP, ADP, and ATP levels or the AMP/ATP ratios, indicating that activation of AMPK by TPr stimulation is likely AMP-independent. Despite many studies reporting that AMPK cascades respond mainly to the intracellular AMP/ATP ratio,1,2,8,9 recent studies suggest that AMPK can also be activated by a second mechanism without a change in AMP or the AMP/ATP ratio.26,41 Finally, IBOP increased the common precipitation of LKB1 with AMPK, despite the fact that activity of LKB1 was not increased by TPr stimulation. Our previous studies also showed that AMPK coimmunoprecipitates with LKB1,27,39 suggesting that AMPK associates with LKB1 and that this association may be involved in AMPK activation. The relative contribution of these sites and the upstream kinase(s) responsible for LKB1 phosphorylation, however, remains to be identified. The phosphorylation of Ser307 site seems to parallel that of AMPK better than the Ser 428 site because it peaks and then decreases after 30 minutes. Further studies are warranted.

In the present study, we provide evidence that TxA\(_{2}\) is a potent stimulator of ROS and that activation of AMPK by TPr-derived ROS inhibited VSMC protein synthesis. This finding is consistent with recent reports showing that the TxA\(_{2}\) analogue, U46619, promotes the formation of superoxide in intact pulmonary arteries and in pulmonary artery and corpus cavernosal smooth muscle cells.36,37 TPr expression and serum levels of multiple TPr ligands are elevated, both locally and systemically, in patients with several vascular and thrombotic diseases, including ischemia, angioplasty, unstable angina, myocardial infarction, and reocclusion after coronary thrombolysis.8,30,38,42 TPr density is increased in atherosclerotic coronary arteries and in vessels with severe intimal hyperplasia.38 Because there is overwhelming evidence that ROS play a causal role in the development of cardiovascular diseases and diabetes, TPr-stimulated ROS production might contribute to the excessive oxidant stress observed in these diseases, and ROS might serve as the common pathway for TPr-induced vascular pathways. Indeed, we found that TPr stimulation increased both superoxide and ONOO\(^{-}\), decreased NO bioactivity, and increased protein tyrosine nitration in cultured endothelial cells.

The function of AMPK activation is still not fully understood. Here we have preliminary evidence that inhibition of AMPK accentuated IBOP-induced protein synthesis. It is known that AMPK activation suppresses protein synthesis and prevents cardiac myocyte hypertrophy by regulation of the eEF2 kinase/eEF2 axis and/or TSC2-mTOR-P70S6 pathways.43–45 How AMPK suppresses Tpr-induced protein synthesis in VSMCs remains unclear. Further study is warranted to elucidate the molecular mechanisms underlying AMPK-mediated inhibition of protein synthesis.

In conclusion, we have provided evidence that Tpr stimulation increases ROS, which mediates AMPK activation in VSMCs. In addition, we demonstrate that Tpr-activated AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. In addition, we demonstrate that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Sources of Funding
This study was supported by NIH grants HL079584, HL080499, and HL074399; a grant-in-aid from the Juvenile Diabetes Research Foundation; a Research Award from Oklahoma Center for the Advancement of Science and Technology; a research award from the American Diabetes Association; and funds from the Travis Endowed Chair of the University of Oklahoma Health Science Center (all to M.-H.Z.).

Disclosures
None.

References
5. Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF, Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF. AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Disclosures
None.

References
5. Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF, Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF. AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Disclosures
None.

References
5. Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF, Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF. AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Disclosures
None.

References
5. Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF, Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF. AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Disclosures
None.

References
5. Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF, Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF. AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Disclosures
None.

References
5. Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF, Marsin AS, Bertrand L, Rider MH, Deprez J, Roussel MF, Vincent MF. AMPK is LKB1-dependent, which requires the phosphorylation of both Ser307 and Ser428 of LKB1 resulting in AMPK activation. We have also demonstrated that TPr-activated AMPK is required for AMPK activation in VSMCs. Finally, we have provided evidence that AMPK activation may serve as an endogenous inhibitor for IBOP-induced cellular protein synthesis in VSMCs. Thus, AMPK may be a therapeutic target in preventing cardiovascular diseases such as diabetes and atherosclerosis.

Disclosures
None.

Thromboxane Receptor Activates the AMP-Activated Protein Kinase in Vascular Smooth Muscle Cells via Hydrogen Peroxide
Miao Zhang, Yunzhou Dong, Jian Xu, Zhonglin Xie, Yong Wu, Ping Song, Melissa Guzman, Jiliang Wu and Ming-Hui Zou

Circ Res. 2008;102:328-337; originally published online December 6, 2007; doi: 10.1161/CIRCRESAHA.107.163253

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/102/3/328

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2007/12/06/CIRCRESAHA.107.163253.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Online Data Supplements

Expanded Materials and Methods

Materials

Dulbecco's modified Eagle's medium/Ham's F12 medium (DMEM/F12) were purchased from Mediatech, Inc (Herndon, VA) and ATCC (Rockville, MD), respectively. Fetal calf FCS (FCS), 5-(and-6)-carboxy-2′,7′ -dichlorodihydrofluorescein diacetate (carboxy-H2DCF-DA), and phospho-LKB1 antibody (LKB1-Ser 307) were from Invitrogen Corporation (Carlsbad, CA). All culture media were supplemented with penicillin (100 Units/ml) and streptomycin (100 µg/ml). IBOP ([1S-(1 alpha,2 beta(5Z),3 alpha(1E,3R),4 alpha)]-7-[3- (3-hydroxy-4- (4′-iodophenoxy) -1-butenyl)-7- oxabicyclo-[2.2.1] heptan-2-yl] -5-h eptenoic acid), U46619, SQ29548, the polyclonal antibody against TPr, and catalase assay kits were obtained from Cayman Chemical (Ann Arbor, MI). Antibodies against phospho- AMPK alpha (Thr172), AMPK alpha, phospho-Acetyl-CoA carboxylase (ACC) (Ser79) and phospho-LKB1 (Ser428) were from Cell Signaling (Danvers, MA). LKB1 monoclonal antibody was from Santa Cruz (Santa Cruz, CA). LKBtide peptide (SNLYHQGKFLQTFCGSPLYRRR corresponding to amino acids 196-215 of human NUAK2) was synthesized by Mimotopes, Australia. Protein A-Sepharose was purchased from GE Healthcare (Piscataway, NJ). STO-609 and other chemicals or organic solvents were obtained from Sigma (St. Louis, MO).

Cell Culture
Rat VSMC were cultured from rat thoracic aortas as described previously \(^1\). Cultured cells were used between passages 5 and 12 and cultured in DMEM/F12 medium with 10% FCS, penicillin (100 units/ml), and streptomycin (100 µg/ml). When confluent, the cells were washed with FCS-free medium and then maintained in DMEM/F12 with 0.1% FCS for 24 h. LKB1-deficient lung cancer cell line A549 cells (ATCC) were grown in Ham’s F-12K medium supplemented with 10% FCS, penicillin, and streptomycin.

Fluorescent Measurement of Intracellular Reactive Oxygen Species

Cells were inoculated at a density of \(6 \times 10^4\) cells per well in a 24-well plate overnight and were then incubated in DMEM/F12 with 0.1% fetal calf serum (FCS) for 24 h. Cells were loaded with 20 µM DCF-DA in phenol-free culture medium for 30 min at 37 °C. The cells were then washed with culture medium and treated with either IBOP or ethanol in culture medium. The change in fluorescence was measured using a Synergy HT Microplate Fluorescence Reader from Bio-Tek Instruments (Winooski, VT) at excitation and emission wavelengths of 485 nm and 545 nm, respectively.

Site-Directed Mutagenesis and Adenovirus Construction

The AMPK-CA adenoviral vector was constructed from a rat cDNA encoding residues 1–312 of AMPK-α1 and bearing a mutation of Thr172 into aspartic acid (T172D); the AMPK-DN adenoviral vector was constructed from AMPK-α2 bearing a mutation altering lysine45 to arginine (K45R) as described previously \(^2\). The wild-type (WT) and mutant (Ser428A/Ser307A/Asp194A) human LKB1 cDNAs in the mammalian expression vector pCI-neo
were established in our laboratory as previously described. Briefly, the wild type LKB1 gene coding region was amplified by PCR, the PCR product was then ligated into a pGEM-T easy TA cloning vector, the LKB1 gene was released using EcoRI/NotI enzymes from the TA cloning vector, and was cloned into the pCI-neo mammalian expression vector (Promega; catalogue number E184). Ser428, Ser 307, or Asp194 of LKB1 was mutated into alanine by site-directed mutagenesis (Stratagene, Cat# 200518). All of the mutation vectors were confirmed by DNA sequencing.

For adenovirus construction, the LKB1 ORF for wild type (WT) point mutations were released from the plasmid DNA of the WT-LKB1 pCI-neo, S307A/pCI-neo, S428A/pCI-neo, and D194A/pCI-neo vectors, and then cloned into the EcoRI/NotI sites of transfer vector pCR259 in the Transpose-Ad adenoviral vector system (Q-Biogen, cat# AES3000; Canada). The resulting vectors, WT-LKB1/pCR259, S307A/pCR259, S428A/pCR259, and D194A/pCR259, were transformed to Transpose-Ad 294 E. coli cells for homolog-based recombination with the adenovirus genome. Positive clone selection, characterization, and large-scale adenovirus amplification were carried out according to the manufacturer’s instructions.

siRNA-mediated knockdown of CaMKKβ

Small interfering RNA (siRNA) duplex oligonucleotides used in this study are based on the human cDNAs encoding CaMKKβ. CaMKKβ siRNA and a nonsilencing control siRNA were obtained from Santa Cruz Biotechnology Inc (Santa Cruz, CA). Transfection was performed according to the manufacturer's instructions.
Adenoviral Infection

Confluent VSMC were infected in medium with 0.1% FCS overnight. The cells were then washed and incubated in fresh DMEM/F12 medium with 0.1% FCS for an additional 24 h prior to experimentation. VSMC were infected with indicated adenoviruses, and an adenovirus expressing green fluorescence protein (GFP) was used as a control. All adenovirus titrations were measured using the BD Clontech Adeno-X Rapid Titer kit (Cat# K1653-1). Confluent VSMC were infected with a MOI of 100, which was required to achieve infection efficiency of over 80% as determined by GFP expression.

Assay of Catalase Activity

Catalase activity was determined using catalase assay kits (Cayman Chemical Co, Ann Arbor, MI) according to the manufacturer’s protocol.

Assay of LKB1 activity

Endogenous LKB1 was immunoprecipitated from 600 µg of VSMC lysate protein using 10 µl of LKB1 antibody, and LKB1 activity was measured using the LKBtide substrate assay, as described previously.

Immunoprecipitation and Western Blotting

Cell lysates (1 mg of total proteins) were incubated with specific antibodies overnight at 4°C with rotation. Immune complexes were then incubated with protein A-Sepharose beads for 3 h and washed three times with IP buffer (lysis buffer plus 1 M NaCl), and
immunoprecipitates were boiled in 1x SDS sample buffer for 5 min. After separation by 8% SDS-PAGE, samples were analyzed using the Western blotting as previously described. The density of each band was quantified using AlphaEaseFC Software (Alpha Innotech Co, San Leandro, CA).

Measurement of Intracellular AMP, ADP, and ATP Levels

After treatment with IBOP or U46619, VSMC were immediately covered with ice-cold 1% trichloroacetic acid and kept on ice for 5 min. The cells were then scraped and centrifuged, and the supernatants were neutralized by ether extraction. ATP, ADP, and AMP content was assayed by bioluminescent methods as described previously.

Protein Synthesis Measurement

To measure synthesis of new protein, VSMC were cultured in 6-well plates and allowed to grow to confluence in DMEM/F12 containing 10% FCS (two parallel incubations with same passage and identical initial cell number were applied for \(^{3}\)H]leucine incorporation and cell number counting, respectively). VSMC were made quiescent by incubating in 0.1% FCS medium for 24 hours and then infected by Ad-AMPK CA, Ad-AMPK DN or Ad-GFP according to the method described above. The cells were then cultured in medium with 2.5% FCS and with or without IBOP (1 µM). L-[4,5-\(^{3}\)H]leucine (1 µCi/mL) was added to each well 5 hours before the end of the incubation period. Cells were washed twice with Dulbecco's PBS and twice with ice-cold trichloroacetic acid (10%) and then incubated with 0.3N NaOH for 60 min at room temperature. Relative \(^{3}\)H]leucine incorporation was determined by liquid scintillation counting.
For cell counting, the cells were removed by trypsinization, and the number of viable cells was counted in a hemocytometer with the use of trypan blue staining.

Statistical Analyses

Values are expressed as mean ± SEM. Statistical comparisons were performed with Student’s t test or one-way ANOVA with Bonferroni post hoc analysis. To determine the effects of IBOP and AMPK on protein synthesis, two-way ANOVA followed by Bonferroni post hoc analyses was conducted. P<0.05 was considered statistically significant.
Supplemental Figure 1. TxA2 mimetics increase AMPK phosphorylation. (a).

Confluent VSMC were treated with the TxA\textsubscript{2} mimetic carbocyclic TxA2 (CTA2) at concentrations indicated for 10 min. Both phosphorylated AMPK-Thr172 and ACC-Ser79 were detected in western blots by using specific antibodies. (b). VSMC were treated with IBOP (0.1 \(\mu\)M, 10 min), U46619 (1 \(\mu\)M, 10 min), or AICAR (1mM, 1 h). Data shown as mean±SEM (n=3). ‡ \(p< 0.01\), treated versus untreated control cells.

Supplemental Figure 2. (a) Activation of AMPK in VSMC by 5h IBOP treatment. Confluent VSMC were exposed to IBOP for 5 h and the phosphorylation of AMPK and ACC were detected in western blots. The blot is a representative of 3 blots from 3 independent experiments. (b) Expression of AMPK \(\alpha\) in VSMC after 96 h of IBOP (1\(\mu\)M) treatment. (c). TPr antagonist S18886 abolishes TPr-induced AMPK activation. Confluent VSMC were preincubated with or without S18886 at 1 \(\mu\)M for 30 min before being exposed to IBOP (1 \(\mu\)M) or U46619 (1 \(\mu\)M) for 15min. The blot is a representative of three blots from three individual experiments.

Supplemental Figure 3. IBOP-induced AMPK activation is AMP/ATP independent.

Rat VSMC were treated with IBOP (1 \(\mu\)M, 10 min) or U46619 (1 \(\mu\)M, 10 min). Intracellular AMP, ADP, and ATP levels were assayed by a bioluminescent method as described in Materials and Methods. AMP, ADP, and ATP levels were expressed as \(\mu\)mol/mg protein. Values are expressed as mean±SEM.
Supplemental Figure 4. LKB1 activity in VSMC. VSMC were treated with IBOP (1 µM) or U46619 (1 µM) for 10 min. LKB1 activity was measured using the LKBtide substrate assay. Data shown as mean±SEM (n=3).

Supplemental Figure 5. Overexpression of AMPK-DN or AMPK-CA in VSMC. VSMC were transfected with GFP, AMPK-DN or AMPK-CA for 48 h and then treated with IBOP (1 µM) for 5h. AMPK expression was detected in western blots. The blot is a representative of 3 blots from three individual experiments.

References

Zhang et al. Supplemental Figure 1
a.

<table>
<thead>
<tr>
<th></th>
<th>0 h</th>
<th>5 h</th>
<th>IBOP (1µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-ACC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-AMPK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b.

<table>
<thead>
<tr>
<th></th>
<th>0 h</th>
<th>96 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPK α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zhang et al. Supplemental Figure 2
Zhang et al. Supplemental Figure 3

a.

![Bar chart showing AMP/ADP/ATP ratio](image)

b.

![Bar chart showing AMP/ATP ratio](image)
Zhang et al. Supplemental Figure 4

![Graph showing LKB1 activity (mU/mg)](image)
Zhang et al. Supplemental Figure 5