Lipid-laden macrophages are the predominant cell type in the formative stages of atherosclerosis in most animal models and humans. Lipid deposition appears as large numbers of intracellular droplets that have a foam-like appearance when paraffin-embedded tissue sections are viewed at high magnification. Consequently, the descriptive name of foam cells is applied to these lipid-laden macrophages. Originating from recruited monocytes, it has been hypothesized that foam cells remove lipoproteins that have been retained and modified in the subendothelial space. For this function to be beneficial, lipid-laden macrophages would subsequently egress from the area of the forming lesion. However, the system frequently goes awry. Macrophages recruited to the arterial wall become grossly engorged with lipid, presumably because of an imbalance in lipid metabolism. In this greatly hypertrophied state, macrophages are unable to transit through the endothelium and be transferred back to the blood compartment. Therefore, instead of exiting the artery, these cells are retained and accumulate. In addition to these cells forming the mass of the evolving lesions, there is also the potential for secretion of many bioactive molecules that may perpetuate and modify the atherogenic process.

There have been many approaches to modify the development of foam cells by manipulating intracellular transport, intracellular storage, or efflux of lipids. The transport of extracellular lipid to form intracellular droplets is presumed to occur via endocytosis through lipoprotein receptors that are not downregulated by increased cholesterol content. There are many classes of scavenger receptors that transport modified lipoproteins into macrophages, of which the most intensely studied has been class A scavenger receptor (SR-A) and CD36. However, genetic manipulation of SR-A and CD36 has generated inconsistent findings for effects on atherosclerosis. Once inside the cell, lipoprotein-derived cholesterol ester is cleaved in lysosomes by an acidic cholesterol ester hydrolase. Unesterified cholesterol is transported to the cytosol for reesterification by acyl-coenzyme A:cholesterol ester hydrolase. Unesterified cholesterol is transported to the cytosol for reesterification by acyl-coenzyme A:cholesterol ester hydrolase. Unesterified cholesterol may also partition to the plasma membrane and transfer to extracellular acceptors. Several pathways have been proposed for cholesterol efflux, including the ABC transporters and SR-B1. Therefore, cholesterol homeostasis in macrophages has many levels of regulation involved in their conversion to foam cells (Figure).

In this issue of Circulation Research, Paul et al have studied the role of adipose differentiation–related protein (also known as adipophilin, ADRP, or ADFP) on macrophage foam cell formation and atherosclerosis. ADFP, as it is referred to in this article, is a member of the PAT domain family of proteins that are named from the founding 3 members of this group: perilipin, adipophilin, and tail-interacting protein of 47 kDa. ADFP is probably expressed in the majority of cell types, although, unlike some other PAT domain family members, it is relatively sparsely expressed in mature adipocytes. Mice that are deficient in ADFP have a modest phenotype that includes reductions in liver triglyceride content and resistance to diet-induced fatty liver. However, they have no difference in body weight, plasma triglyceride and cholesterol concentrations, fat mass, or adipocyte differentiation.

Although mice deficient in ADFP have a mild phenotype, the expression of this protein alters lipid metabolism in cultured macrophages. Overexpression of ADFP increased the storage of triglycerides and cholesterol following incubation with acetylated LDL (AcLDL) in THP-1 cells, whereas depletion of the protein using small interfering RNAs reduced lipid accumulation. This increase occurred without affecting transport of AcLDL particles or regulating many proteins involved in cholesterol efflux. Although these cell culture studies with manipulated ADFP expression portend a protection against atherosclerosis, the field has been led astray in the past by such expectations. Perhaps one of the best examples of this involves studies on ACAT. The development of many pharmacological inhibitors of this enzyme demonstrated that they decreased lipid deposition in macrophages. In contrast, repopulation of irradiated LDL receptor–deficient mice with bone marrow–derived stem cells from ACAT1-deficient mice led to a dramatic increase in macrophage lipid deposition in atherosclerotic lesions. Conversely, macrophage-specific overexpression of neutral cholesterol hydrolase reduced intracellular lipid deposition and atherosclerotic lesion formation. Because the net effect of ACAT inhibition and excess neutral cholesterol hydrolase should both increase unesterified cholesterol, it is a quandary that they produce such divergent results. Despite the several decades of research, it is clear that the we have not resolved all the mechanisms of macrophage lipid engorgement and its effects on atherosclerosis.

Therefore, although the cell culture studies on ADFP may be consistent with an effect in reducing atherosclerosis, this needs to be tested experimentally in vivo. In this impressive...
ADFP is upregulated in atherosclerotic tissue from apoE study performed by Paul et al,9 the authors have demonstrated cholesterol ester trafficking are denoted as: A absence decreases atherosclerosis; B absence increases atherosclerosis; C overexpression decreases atherosclerosis; and D absence has inconsistent effects on atherosclerosis.

The authors are supported by NIH grant HL80100.

Figure. Lipoprotein–cholesterol ester trafficking in macrophages. Modified lipoproteins are transported into macrophages through scavenger receptors (including SR-A and CD36). In lysosomes, cholesterol esters (CE) are cleaved to unesterified cholesterol (UC) by acid cholesterol ester hydrolase (ACEH). Unesterified cholesterol is transported out of lysosomes and reesterified by ACAT to form cholesterol esters that are stored in lipid droplets. Cholesterol esters are cleaved to cholesterol by neutral cholesterol ester hydrolase (NCEH). Unesterified cholesterol can be transferred to the extracellular space by several potential transporters (including ABCA1, ABCG1, and SR-B1) to acceptor molecules such as HDL. The lipid droplets are associated with ADFP. Paul et al demonstrated that absence of ADFP prevented lipid engagement, both in vitro and in vivo. The effects of macrophage-specific regulation of receptors, enzymes, and transporters on lipoprotein–cholesterol ester trafficking are denoted as: A absence decreases atherosclerosis; B absence increases atherosclerosis; C overexpression decreases atherosclerosis; and D absence has inconsistent effects on atherosclerosis.

Macrophage

transferred to the extracellular space by several potential transporters (including ABCA1, ABCG1, and SR-B1) to acceptor molecules such as HDL. The lipid droplets are associated with ADFP. Paul et al demonstrated that absence of ADFP prevented lipid engagement, both in vitro and in vivo. The effects of macrophage-specific regulation of receptors, enzymes, and transporters on lipoprotein–cholesterol ester trafficking are denoted as: A absence decreases atherosclerosis; B absence increases atherosclerosis; C overexpression decreases atherosclerosis; and D absence has inconsistent effects on atherosclerosis.

Although there are many factors that modulate atherosclerosis, regulation of lipid metabolism is still the mainstay of targets for atherosclerosis therapies.16 This publication by Paul et al9 invokes ADFP as a new target to reduce macrophage lipid deposition as an approach to decreasing atherosclerosis.

Sources of Funding

The authors are supported by NIH grant HL80100.
Disclosures
None.

References

Key Words: macrophages ■ atherosclerosis ■ lipid deposition
As Macrophages Indulge, Atherosclerotic Lesions Bulge
Alan Daugherty, Debra L. Rateri and Hong Lu

*Circ Res.* 2008;102:1445-1447
doi: 10.1161/CIRCRESAHA.108.178947
*Circulation Research* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/102/12/1445

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/