Sepsis causes myocardial dysfunction, which contributes to hypotension, impaired perfusion, and even death. The precise mechanisms linking sepsis to myocardial dysfunction are still unclear; however, it is known that the function of cardiomyocytes extends beyond contraction to provide the motive force driving cardiac output and arterial pressure generation. There is increasing evidence that cardiomyocytes have additional properties, analogous in some respects to innate immune antigen-presenting cells that allow cardiomyocytes to respond to "danger" signals with an innate immune inflammatory and functional response. We have additional properties, analogous in some respects to innate immune antigen-presenting cells that allow cardiomyocytes to respond to "danger" signals with an innate immune inflammatory and functional response.2–23 We have recently shown that cardiomyocytes express multiple Toll-like receptors (TLRs) that signal predominantly through NF-κB when stimulated by pathogenic molecules, resulting in decreased cardiomyocyte contractility.24 However, the downstream elements that link TLRs and cardiomyocyte contractility remain unknown. Because decreased contractility can be observed in isolated cardiomyocytes, we searched for candidate molecules that are highly regulated by exposure to TLR ligands and are capable of either exerting an autocrine effect and/or interacting with key intracellular contractile proteins. Using microarray analysis of cardiac tissue following systemic challenge with the TLR ligand lipopolysaccharide (LPS), we identified 2 small calcium-binding proteins (S100A8 and S100A9) as being highly upregulated in cardiomyocytes as early as 6 hours after LPS exposure. S100A8 and S100A9 are members of the EF-hand family of proteins, in which the S100 proteins comprises the largest subfamily. S100 proteins are known to be important to heart function: S100A1 is a key mediator of contractile performance and overexpression of myocardial S100A1 leads to increased contractility25 and improved performance after myocardial infarction,26 whereas S100A1 knockout mice exhibit features of congestive heart failure.27 S100A1 exerts its positive effect on calcium flux and contractility via interaction with and potentiation of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and the ryanodine receptor (RyR)2.25–35 Although S100A1 has been identified as an important therapeutic target, to date, there is little information on the precise mechanisms linking sepsis to myocardial dysfunction, although the downstream events linking Toll-like receptor activation and reduced cardiac contractility remain to be elucidated. S100A8 and S100A9 are highly upregulated in cardiomyocytes as early as 6 hours after LPS exposure and knockdown of S100A9 attenuated LPS-induced cardiac dysfunction. Cardiomyocytes exposed to LPS express S100A8 and S100A9, leading to a RAGE-mediated decrease in cardiomyocyte contractility. This finding provides a novel mechanistic link between circulating pathogen-associated molecular products and subsequent cardiac dysfunction. (Circ Res. 2008;102:1239-1246.)

Key Words: S100 proteins ■ RAGE ■ ventricular contractility
about members of the S100 family being functionally present in the heart during inflammation or sepsis.

Unique among EF-hand proteins, S100A8 and S100A9 are found in both the intracellular and extracellular spaces and, therefore, could potentially act both within the cell and in an autocrine manner. In immune cells, S100A8 and S100A9 are known to be upregulated and secreted in inflammatory conditions, leading to signaling via RAGE (receptor for advanced glycation end products) to induce chemotaxis of neutrophils and amplify the proinflammatory cascade. In addition to this outside-in signaling, given the high degree of homology between the members of the S100 family, it is possible that S100A8 and S100A9 interact with 1 or more of the calcium-regulating proteins SERCA2a and RyR2 to exert an intracellular effect on cardiomyocyte contractility.

We, therefore, hypothesized that cardiomyocytes produce S100A8 and S100A9 in response to exposure to LPS. Given their dual intra- and extracellular roles, we also hypothesized that there would be separate extracellular (RAGE-dependent) and intracellular (RAGE-independent) effects on cardiac contractility.

Materials and Methods

Cell Line
HL-1 cells are an immortalized cell line with adult cardiac morphological, biochemical, and electrophysiological properties, including contraction and biochemical response to cognate ligands. Stimulations and transfections were performed with the cells at confluence.

Primary Murine Cardiomyocytes
Murine ventricular myocytes were isolated from 10- to 14-week-old adult male mice. Isolation was performed as previously described.

Cardiac-Specific Gene Delivery
We altered previously published methods of ultrasound guided gene therapy using commercially available reagents and confirming cardiac delivery in preliminary experiments using LacZ as a marker.

Echocardiographic Assessment of Mice
Mice were lightly anesthetized with 1% to 3% inhaled isoflurane and placed on a warming blanket. M-mode echocardiograms were targeted from 2D echoes obtained using the Vevo 770 ECHO (Visualsonics, Toronto, Ontario, Canada) operating at a 120-Hz frame rate.

Statistical Analysis
All values were expressed as means±SE. For each experimental condition and time point, 4 independent replicate analyses were performed, unless otherwise noted. ANOVA and the post hoc Bonferroni test were used to identify specific differences between groups. The analyses were performed using Sigmasat (SPSS, Chicago, Ill), and statistical significance was set at P<0.05.

An expanded Materials and Methods section is available in the online data supplement at http://circres.ahajournals.org.

Results

Systemic Treatment With LPS Results in Reduced Cardiac Ejection Fraction and Is Associated With a Large Increase in Left Ventricular S100A8 and S100A9
Adult male mice were injected IP with 40 mg/kg Escherichia coli–derived LPS, and cardiac function was assessed preinjection (baseline) and at 6 hours after LPS by echocardiography. Baseline cardiac ejection fraction was 76%, falling to 29% 6 hours following injection of LPS (Figure 1A). Left ventricular tissue was harvested immediately following echocardiography at 6 hours, and quantitative RT-PCR revealed a 42-fold increase in S100A8 and a 49-fold increase in S100A9 mRNA compared with saline-treated mice (Figure 1B).

S100A8 and S100A9 Are Constitutively Found in the HL-1 Cardiac Cell Line, Primary Cardiomyocytes, and Cardiac Tissue; Both Proteins Are Upregulated Following Exposure to LPS
To confirm that cardiomyocytes, rather than nonmyocyte cardiac cells, were responsible for cardiac S100A8 and S100A9 production, immunoblotting was performed on protein lysates from HL-1 cardiomyocytes, primary isolated cardiomyocytes, and left ventricular cardiac tissue exposed to either saline or LPS. All 3 groups had low levels of S100A8 and S100A9 constitutively expressed (saline-treated),
whereas exposure to LPS resulted in increased S100A8 and S100A9 expression in all 3 groups (Figure 2).

Production of S100A8 and S100A9 in Cardiomyocytes Exposed to LPS Is Dependent on MyD88 and Partially Dependent on NF-κB

To determine the pathways responsible for LPS-induced production of S100A8 and S100A9, we used genetically altered mice deficient in the major pathways downstream from TLRs. Because TLR signaling is generally divided into MyD88-dependent or MyD88-independent, we chose to examine whether this adaptor protein was necessary for S100 protein production. In wild-type mice, LPS treatment resulted in a large increase in cardiac S100A8 and S100A9 production, whereas MyD88-null mice had no detectable production of either protein (Figure 3A and 3B). NF-κB is among the major downstream targets of MyD88, and is the predominant pathway in early inflammatory signaling. We found that NF-κB-deficient mice had increased S100A8/A9 production in response to LPS; however, this increase was significantly attenuated when compared with the response observed in wild-type mice (Figure 3A and 3B).

S100A8 and S100A9 Both Result in Decreased Cardiomyocyte Calcium Flux

HL-1 cells beat spontaneously in a concentric fashion, and, therefore, usual measures of contractility, such as fractional shortening, are not able to be reliably performed. However, it is well documented that the HL-1 cardiac action potential, as measured by either patch-clamp or calcium-gated fluorescence, mirrors the expected cardiac contractile response when exposed to cognate cardiac ligands. S100A8, S100A9, and both together resulted in a significant decrease in calcium flux compared with control vector (Figure 4A and 4B).

Cardiac Delivery of S100A8 and S100A9 In Vivo Results in Decreased Ejection Fraction; Knockdown of S100A9 Abrogates LPS-Induced Cardiac Dysfunction

We used small animal echocardiography combined with lipid microbubbles carrying endotoxin-free plasmids to deliver S100A8 and S100A9 or both to the murine heart in vivo. As demonstrated in Figure 5A through 5C, by day 2, there was a strong trend toward decreased cardiac contractility in mice given cardiac S100A8, S100A9, or both compared with control plasmid, although only S100A9 reached statistical significance. All 3 groups demonstrated significant decreases in cardiac ejection fraction compared with control plasmid by day 5.

In separate mice, we determined whether S100A9 has a role in LPS-induced cardiac dysfunction. One week before LPS injection, cardiac-specific delivery of S100A9 small
interfering (si)RNA was performed, and ejection fraction was measured before and 6 hours after LPS (Figure 5D). Mice that had received control plasmid had a 35% reduction in cardiac ejection fraction compared with a 12% reduction in mice in which S100A9 production in response to LPS was reduced by half (Figure 5D).

Coimmunoprecipitation Reveals a Physical Interaction Between RAGE and Cardiac S100A8 and S100A9

Because S100A8 and S100A9 are secreted and interact with the RAGE receptor in other cell types, we next determined whether cardiac S100A8 or S100A9 interacted with the cardiac RAGE receptor. C57BL/6 mice were injected IP with 40 mg/kg LPS to upregulate S100A8 and S100A9. Six hours after injection, hearts were excised and digested to obtain isolated cardiac myocytes. Coimmunoprecipitation was performed with anti-S100A8, anti-S100A9, or nonspecific IgG, and the immunoprecipitate was then probed with anti-RAGE antibody. We found that RAGE coimmunoprecipitated with both S100A8 and S100A9, demonstrating a strong interaction between the RAGE receptor and these proteins (Figure 6).

S100A8 and S100A9 Decrease Cardiomyocyte Calcium Flux and Induce NF-kB via the Transmembrane RAGE Receptor

Given that S100A8 and S100A9 physically interact with RAGE on cardiomyocytes (Figure 6), we next determined whether this interaction was responsible for the decrease in cardiac contrac-

Figure 4. Spontaneously beating HL-1 cardiomyocytes were transfected with plasmids encoding S100A8, S100A9, S100A8+A9, or LacZ (Control). Calcium flux as measured by Fura-2 fluorescence is taken after 24 hours. A, Representative traces showing cells transfected with control plasmid or S100A8 are shown with a large reduction in calcium flux in cells expressing S100A8. B, Group mean data showing large and statistically significant reductions in calcium flux in beating HL-1 cells transfected with S100A8, S100A9, and both S100A8 and -A9 compared with control. *P<0.05 vs control (Ctr).

Figure 5. A through C, Eight- to 10-week-old male C57BL/6 mice had cardiac specific gene delivery of S100A8, S100A9, S100A8+A9, or control plasmid. By day 5 after injection, all 3 groups demonstrated significant decreases in cardiac ejection fraction vs control plasmid. D, Eight- to 10-week-old male C57BL/6 mice had cardiac-specific gene delivery of a plasmid encoding 3 siRNA sequences to S100A9 or scrambled sequences (CL), then, at 1 week, were injected with 40 mg/kg LPS. Immuno-blotting heart digests for S100A9 at 6 hours after LPS treatment revealed a 47% attenuation in cardiac S100A9 production in mice pretreated with S100A9 siRNA compared with mice pretreated with scrambled siRNA. Mice that received control siRNA had a 37% decrease in cardiac ejection fraction at 6 hours compared with only 12% in mice treated with S100A9 siRNA. *P<0.05 vs control.
ility. Anti-RAGE blocking antibody was added before transfection of HL-1 cells with S100A8 and S100A9 and measurement of calcium flux. Surprisingly, blocking the RAGE receptor before transfection of S100A8 or S100A9 not only abolished the decrease in calcium flux but actually resulted in increased calcium flux compared with control cells (Figure 7A). Blocking RAGE in the absence of overexpressed S100A8 and S100A9 had no influence on calcium flux (Figure 7A).

RAGE is known to signal predominantly through NF-κB in other cell types. We confirmed that S100A8 and S100A9 could induce NF-κB activity in HL-1 cardiomyocytes and that blocking RAGE abolished this signaling (Figure 7B).

Coimmunoprecipitation Reveals a Physical Interaction Between Cardiac S100A8, S100A9, and SERCA2a
We hypothesized that similar to S100A1, S100A8 and S100A9 may interact within the cardiomyocyte with 1 or both the calcium-regulating proteins SERCA2a and RyR2, leading to potentiation of the calcium flux. C57BL/6 mice were injected IP with 40 mg/kg LPS to upregulate S100A8 and S100A9. Six hours after injection, hearts were excised and digested to obtain isolated cardiac myocytes. Coimmunoprecipitation was performed with anti-S100A8, anti-S100A9, or nonspecific IgG. The immunoprecipitate was then probed with anti-RAGE antibody, demonstrating a strong interaction between cardiac RAGE and both S100A8 and S100A9.

Discussion
In this study, we propose a novel mechanistic link between activation of TLRs expressed on the surface of cardiomyocytes and the subsequent decrease in cardiac contractility.
The key finding in our study is that on stimulation with the bacterial product LPS, the EF-hand proteins S100A8 and S100A9 are upregulated in cardiomyocytes, leading to a RAGE-dependent decrease in cardiac contractility.

Although it has long been recognized that infection leads to abnormalities in cardiovascular function, the link between pathogen recognition and subsequent cardiac dysfunction remains unclear. We have recently shown that cardiomyocytes express multiple TLRs; this family of receptors is thought to be responsible for innate immune recognition of pathogens and “self” danger molecules such as heat shock proteins. Following stimulation of these receptors with their cognate ligands, cardiomyocytes exhibit decreased contractility both in isolated preparations and in vivo. Because TLRs are not known to interact with the cytoskeleton or contractile machinery, the link between TLR activation and subsequent cardiac contractile dysfunction is unlikely to be direct. Furthermore, because the effect on contractility persists in isolated cardiomyocytes, the pathways downstream of TLRs must lead to either an autocrine effect or interaction with key intracellular contractile proteins or both. With these criteria in mind, we used cDNA microarrays to identify S100A8 and S100A9, which are highly regulated by exposure of cardiomyocytes to TLR ligands. S100A8 and S100A9 are small EF-hand proteins that are capable of exerting both autocrine and intracellular effects. Unique among the members of the 100 family, as well as the larger EF-hand superfamily, S100A8 and S100A9 are found not only intracellularly but also in the extracellular space.

In this study, we show, for the first time, that exposure to the TLR4 ligand LPS causes an early, large upregulation of S100A8 and S100A9 expression in cardiomyocytes. This occurs both in whole heart tissue exposed to systemic LPS and in isolated cardiomyocytes exposed in vitro to LPS. Because it is extremely difficult in the intact heart to determine which type of cardiac cell is responsible for the production of any given molecule, the use of both systems affords a high degree of certainty that the origin of S100A8 and S100A9 is from cardiomyocytes. How does ligation of cardiomyocyte-expressed TLR4 result in the production of S100A8 and S100A9? TLRs are type I transmembrane receptors consisting of a variable number of extracellular leucine rich repeats linked to a cytoplasmic Toll/interleukin-1 receptor (TIR) homology domain. Downstream signaling has been well characterized in TLRs and, although complex, can be divided into major pathways. Activation of most TLRs by ligand binding results in dimerization, a change in conformation, and recruitment of a variety of downstream signaling molecules. All TLRs can signal via MyD88, and this pathway is considered to play a dominant role in early inflammatory events. MyD88 is recruited to the TIR domain of activated TLRs. MyD88 recruits IRAK-4, which activates IKK, leading to liberation of NF-κB from its inhibitor, IκBα, and subsequent translocation of NF-κB to the nucleus, where it induces proinflammatory cytokine production. In addition to the MyD88-dependent pathway, alternative signaling pathways have been identified for TLR4. TLR4 induces interferon-β production independent of MyD88, which induces STAT1 phosphorylation and proinflammatory gene expression.

Using MyD88 and NF-κB null mice, we determined that LPS-induced production of S100A8 and S100A9 is absolutely dependent on MyD88 and that, although NF-κB–null mice exhibited a greatly attenuated response to LPS, there remained a significant elevation of both S100A8 and S100A9. Given that MyD88-dependent signaling not involving NF-κB is through the mitogen-activated protein kinase (MAPK) cascade (p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase), it seems probable that LPS-induced S100A8 and S100A9 production is dependent on both NF-κB and MAPK. Interestingly, NF-κB and MAPK are also activated with overexpression of S100A8 and S100A9 in prostate cancer cells, raising the possibility that a positive-feedback loop exists both upstream and downstream of S100A8 and S100A9.

We went on to show at both the cellular and the organ level that S100A8 and S100A9 reduce cardiomyocyte contractility, resulting in a reduced cardiac ejection fraction. We further showed that this reduction in contractility is through a RAGE-dependent mechanism. RAGE is a member of the immunoglobulin superfamily, with the extracellular portion of this cell surface receptor responsible for ligand binding. Emerging as a key molecule responsible for diverse pathologies, including both vascular and nonvascular conditions, RAGE is a multiligand receptor known to bind advanced glycation end products (AGEs), amphoterin, amyloid β-peptide, and S100A8/S100A9. AGEs have been the most studied ligand for RAGE, with particular interest in how this interaction may mediate macrovascular complications associated with hyperglycemia. S100A8 and S100A9 are also known to activate RAGE and, depending on the cell type on which RAGE is expressed, can do so in either heterodimeric or homodimeric form.

Extracellular cation flux, most notably Ca$^{2+}$ and Zn$^{2+}$, induces conformational change and allows S100A8 and S100A9 to bind to RAGE, initiating signaling events within the cell. In immune cells, the interaction between S100A8/S100A9 and RAGE induces chemotaxis of neutrophils and secretion of proinflammatory cytokines. In cardiomyocytes, ligation of RAGE by AGEs is known to impair cardiac function.
calcium flux and has been shown to be a key mediator of both the proinflammatory state and contractile dysfunction associated with ischemia/reperfusion. Our cardiomyocyte calcium flux and in vivo cardiac EF data suggest that the individual proteins (homodimeric) are capable of mediating reduced cardiac contractility, although it does appear in vivo that S100A8 combined with S100A9 reduces EF more than either given individually.

Although S100A8 and S100A9 do signal through RAGE under inflammatory conditions, with resultant decreased cardiac contractility, RAGE does not appear to have a constitutive effect on cardiomyocyte calcium flux because blocking RAGE under baseline conditions did not result in a change in calcium flux. However, when S100A8 and S100A9 are expressed with RAGE blocked, this resulted in significantly increased cardiomyocyte calcium flux. This augmented flux may reflect the high degree of homology between S100 proteins, because S100A1 is known to exert a positive effect on cardiac flux and contractility via interaction with, and potentiation of, the calcium-gating proteins SERCA2a and RyR2. We went on to show through coimmunoprecipitation that both S100A8 and S100A9 do in fact physically interact with SERCA2a, whereas no such interaction was found between them and RyR2.

These intriguing observations lead to the conclusion that S100A8 and S100A9 are not only immunologically active chemokines but are, in fact, important molecules with respect to cardiac function. They are produced by cardiomyocytes in response to inflammatory conditions and proceed to act in at least 2 compartments to influence cardiac contractility. The predominant effect is autocrine: extracellular interaction with cardiomyocyte-expressed RAGE results in decreased contractility. The second compartment is intracellular, where their physiological function is unmasked by blocking the more potent RAGE-mediated effects. Within the cell, cardiomyocyte calcium flux is potentiated by both S100A8 and S100A9, possibly through SERCA2a. This last function is speculative because, although our data suggest physical interaction, further investigations would be necessary to infer causation.

It is increasingly recognized that inflammation is a common underlying feature of many cardiac pathologies. TLRs recognize both invasive pathogens and, perhaps more importantly, endogenous markers of tissue damage, raising the strong possibility that this TLR-S100A8/A9 pathway is relevant to a host of inflammatory cardiac conditions such as ischemia, transplant rejection, and autoimmune disorders.

Sources of Funding
This work was supported by Canadian Institutes of Health Research. K.R.W. is a Michael Smith Foundation for Health Research Distinguished Scholar. J.H.B. is an IMPACT/Michael Smith Foundation for Health Research Postdoctoral Fellow and a Providence Health Institute Physician Scholar.

Disclosures
None.

References
24. Boyd JL, Mathur S, Wang Y, Bateman RM, Walley KR. Toll-like receptor stimulation in cardiomyocytes decreases contractility and ini-

S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products
John H. Boyd, Bernard Kan, Haley Roberts, Yingjin Wang and Keith R. Walley

Circ Res. 2008;102:1239-1246; originally published online April 10, 2008;
doi: 10.1161/CIRCRESAHA.107.167544

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/102/10/1239

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2008/07/21/CIRCRESAHA.107.167544.DC2
http://circres.ahajournals.org/content/suppl/2008/04/10/CIRCRESAHA.107.167544.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Materials and methods

Cell line: HL-1 cells are an immortalized cell line with adult cardiac morphological, biochemical, and electrophysiological properties, including contraction and biochemical response to cognate ligands. The cell line was kindly provided by Dr William Claycomb. Cells are grown in complete supplemented Claycomb media (JRH Biosciences, Lenexa, Kansas). Stimulations and transfections are performed with the cells at confluence.

Primary murine cardiomyocytes: Murine ventricular myocytes are isolated from 10-14 week old adult male mice. After pelleting, cells are suspended in AS media (Cellutron, Highland Park, NJ) at a density of 20,000 cells/mL and placed in a 37°C incubator on matrigel (BD Biosciences, Franklin Lakes, NJ) coated coverslips. When cells are to be kept in culture greater than 8 hours 10 mM 2,3–butanedione monoxime is added to the media.

Genetically engineered mice: MyD88 knockout mice were obtained from S Quereshi (Montreal PQ). NF-κB knockout mice (NF-kB KO 129P-Nfkbtm1Bal/J) were obtained from Jackson Labs. Genotype was verified through RT-PCR.

Cell culture treatments: 10ug/mL E. Coli LPS (Invivogen, San Diego CA) is added 4 hours prior to harvesting cells for RNA assays and, in separate experiments, 24 hours prior to harvesting supernatant for protein assays. Inhibition of RAGE: 1ug/ml anti-
murine RAGE blocking antibody (R&D Systems, Minneapolis MN) was added to supplemented Claycomb media + 10% FBS 24 hours prior to calcium flux measurement.

Plasmids and transfections: Lipofectamine 2000 in OPTIMEM (Invitrogen, Carlsbad, CA) is used as per the manufacturer’s instructions. S100A8 and S100A9 vectors (Origene Technologies, Rockville, MD) and mock transfection using the backbone only is performed. We have found that transfection efficiency, as determined using a GFP containing plasmid, is 50-60% at 48 hours. S100A9 siRNA plasmid and control/scrambled siRNA plasmid (Sigma, Oakville Canada) were used in vivo only.

Luciferase assay: HL-1 cells were transfected as above using pNFkB-Luc vector (BD Biosciences, Franklin Lakes, NJ) and a Renilla pGL4.74 [hRluc/TK] vector (Promega, Madison, WI). Cells were lysed using Passive Lysis Buffer (Promega), then luminescence quantified using the Dual-Luciferase Reporter Assay (Promega #1910) and a Fluostar Optima Luminometer (BMG Labtech, Durham NC). Relative Light Units (RLU) were obtained for both Renilla and the Firefly Luciferase and all results expressed as the ratio of Luciferase RLU to Renilla RLU.

Immunoprecipitation and immunoblotting: Tissues and cells were homogenized in cell lysis buffer containing protease inhibitors aprotinin 10 ug/ml and leupeptin 10ug/ml and the phosphatase inhibitor sodium orthovanadate 10 mM. Anti-S100A8 and anti-s100A9 (R&D Systems, Minneapolis MN), anti-RAGE (R&D Systems, Minneapolis MN) and anti-SERCA2A (Santa Cruz Biotech, Santa Cruz California) were used as
primary antibodies. Immunoprecipitation was performed with 1μg/ml anti-S100A8, S100A9 or isotype control Ab using the protein G immunoprecipitation kit (Roche, Laval PQ) as per the manufacturer’s instructions.

Calcium flux assay: HL-1 cells grown to confluence on 4-well LabTek coverslips chambers (Sigma, Oakville, ON) are incubated for 30 minutes with 2.5 μM Fura-2 calcium-gated fluorescent dye (Molecular probes). Fluorescence is captured using a photomultiplier detector (Ionoptix corp, Milton, MA) and analyzed using an Ionoptix Softedge detection package that directly yields dynamic cardiomyocyte calcium flux (Ionoptix corp, Milton, MA). Calcium flux is calculated as peak to baseline difference in the ratio of emissions from excitation wavelengths 340/380 nm.

RNA extraction and quantitative RT-PCR: Total RNA is extracted using Trizol (Invitrogen, Carlsbad, CA) as per the manufacturer’s instructions. 1 μg of RNA is treated with DNAase I Amplification Grade (Invitrogen, Carlsbad, CA). One step Quantitative real time RT-PCR will be performed using a SYBR green RT-PCR kit (QIAGEN Inc. Mississauga, ON) according to manufacture’s instructions on an ABI 7200 detection system (Applied Biosystems, Foster City, CA). 20 μL samples are amplified using a program that includes a reverse transcription procedure consisting of one cycle at 50°C for 30 minutes and 95°C for 15 minutes followed by 40 cycles of denaturation step at 94°C for 15 seconds, annealing step at 60°C for 30 seconds and extension step at 72°C for 30 seconds. The absolute amount of the target gene is determined using external
standards. S100A8 and S100A9 primers were obtained from ABI’s list of pre-validated primer-probe sets (Applied Biosystems, Foster City, CA).

Cardiac-specific gene delivery: Depot microbubbles (Visualsonics, Toronto ON) 5uM in diameter are reconstituted with 2ug/ul endotoxin-free plasmid and incubated 30 minutes at room temperature. 4ul/gram of this plasmid-microbubble mixture is injected via mouse tail vein. Successful injection is confirmed through echocardiographic visualization with the Vevo 770 small animal ECHO (Visualsonics, Toronto ON) of contrast first in the right ventricular cavity then within 3 cardiac cycles the left ventricular cavity. Ten minutes following intravenous injection ventricular tissue opacification due to capillary lodging of the microbubbles is maximum while intravascular contrast has largely cleared. Microbubbles are then cavitated using 4 pulses per level of the low-frequency/high-energy “destruct” mode within the contrast software mode (Visualsonics, Toronto ON). This destruction is performed at levels from cardiac base to apex.

Echocardiographic assessment of mice: Mice are lightly anesthetized with 1-3% inhaled isoflurane and placed on a warming blanket. M-mode echocardiograms are targeted from 2D echos obtained using the Vevo 770 ECHO (Visualsonics, Toronto ON) operating at a 120 Hz frame rate. Left parasternal 2D left ventricular cross-sectional echocardiographic images are obtained. The position and angle of the echo transducer is maintained by directing the beam just off the tip of the anterior leaflet of the mitral valve and by maintaining internal anatomic landmarks constant. All measurements are taken from M-mode traces at end-expiration. Left ventricular internal dimensions will be
measured at end-diastole (defined as the onset of the QRS complex in lead II of the simultaneously obtained electrocardiogram) and at end-systole (defined as minimum internal ventricular dimension).
Materials and methods

Cell line: HL-1 cells are an immortalized cell line with adult cardiac morphological, biochemical, and electrophysiological properties, including contraction and biochemical response to cognate ligands. The cell line was kindly provided by Dr William Claycomb. Cells are grown in complete supplemented Claycomb media (JRH Biosciences, Lenexa, Kansas). Stimulations and transfections are performed with the cells at confluence.

Primary murine cardiomyocytes: Murine ventricular myocytes are isolated from 10-14 week old adult male mice. After pelleting, cells are suspended in AS media (Cellutron, Highland Park, NJ) at a density of 20,000 cells/mL and placed in a 37°C incubator on matrigel (BD Biosciences, Franklin Lakes, NJ) coated coverslips. When cells are to be kept in culture greater than 8 hours 10 mM 2,3–butanedione monoxime is added to the media.

Genetically engineered mice: MyD88 knockout mice were obtained from S Quereshi (Montreal PQ). NF-κB knockout mice (NF-kB KO 129P-Nfkbtm1Bal/J) were obtained from Jackson Labs. Genotype was verified through RT-PCR.

Cell culture treatments: 10ug/mL E. Coli LPS (Invivogen, San Diego CA) is added 4 hours prior to harvesting cells for RNA assays and, in separate experiments, 24 hours prior to harvesting supernatant for protein assays. Inhibition of RAGE: 1ug/ml anti-
murine RAGE blocking antibody (R&D Systems, Minneapolis MN) was added to supplemented Claycomb media + 10% FBS 24 hours prior to calcium flux measurement.

Plasmids and transfections: Lipofectamine 2000 in OPTIMEM (Invitrogen, Carlsbad, CA) is used as per the manufacturer’s instructions. S100A8 and S100A9 vectors (Origene Technologies, Rockville, MD) and mock transfection using the backbone only is performed. We have found that transfection efficiency, as determined using a GFP containing plasmid, is 50-60% at 48 hours. S100A9 siRNA plasmid and control/scrambled siRNA plasmid (Sigma, Oakville Canada) were used in vivo only.

Luciferase assay: HL-1 cells were transfected as above using pNFkB-Luc vector (BD Biosciences, Franklin Lakes, NJ) and a Renilla pGL4.74 [hRluc/TK] vector (Promega, Madison, WI). Cells were lysed using Passive Lysis Buffer (Promega), then luminescence quantified using the Dual-Luciferase Reporter Assay (Promega #1910) and a Fluostar Optima Luminometer (BMG Labtech, Durham NC). Relative Light Units (RLU) were obtained for both Renilla and the Firefly Luciferase and all results expressed as the ratio of Luciferase RLU to Renilla RLU.

Immunoprecipitation and immunoblotting: Tissues and cells were homogenized in cell lysis buffer containing protease inhibitors aprotinin 10 μg/μl and leupeptin 10ug/ml and the phosphatase inhibitor sodium orthovanadate 10 mM. Anti-S100A8 and anti-s100A9 (R&D Systems, Minneapolis MN), anti-RAGE (R&D Systems, Minneapolis MN) and anti-SERCA2A (Santa Cruz Biotech, Santa Cruz California) were used as
primary antibodies. Immunoprecipitation was performed with 1μg/ml anti-S100A8, S100A9 or isotype control Ab using the protein G immunoprecipitation kit (Roche, Laval PQ) as per the manufacturer’s instructions.

Calcium flux assay: HL-1 cells grown to confluence on 4-well LabTek coverslips chambers (Sigma, Oakville, ON) are incubated for 30 minutes with 2.5 μM Fura-2 calcium-gated fluorescent dye (Molecular probes). Fluorescence is captured using a photomultiplier detector (Ionoptix corp, Milton, MA) and analyzed using an Ionoptix Softedge detection package that directly yields dynamic cardiomyocyte calcium flux (Ionoptix corp, Milton, MA). Calcium flux is calculated as peak to baseline difference in the ratio of emissions from excitation wavelengths 340/380 nm.

RNA extraction and quantitative RT-PCR: Total RNA is extracted using Trizol (Invitrogen, Carlsbad, CA) as per the manufacturer’s instructions. 1 μg of RNA is treated with DNAase I Amplification Grade (Invitrogen, Carlsbad, CA). One step Quantitative real time RT-PCR will be performed using a SYBR green RT-PCR kit (QIAGEN Inc. Mississauga, ON) according to manufacture’s instructions on an ABI 7200 detection system (Applied Biosystems, Foster City, CA). 20 μL samples are amplified using a program that includes a reverse transcription procedure consisting of one cycle at 50°C for 30 minutes and 95°C for 15 minutes followed by 40 cycles of denaturation step at 94 °C for 15 seconds, annealing step at 60°C for 30 seconds and extension step at 72°C for 30 seconds. The absolute amount of the target gene is determined using external
standards. S100A8 and S100A9 primers were obtained from ABI’s list of pre-validated primer-probe sets (Applied Biosystems, Foster City, CA).

Cardiac-specific gene delivery: Depot microbubbles (Visualsonics, Toronto ON) 5uM in diameter are reconstituted with 2ug/ul endotoxin-free plasmid and incubated 30 minutes at room temperature. 4ul/gram of this plasmid-microbubble mixture is injected via mouse tail vein. Successful injection is confirmed through echocardiographic visualization with the Vevo 770 small animal ECHO (Visualsonics, Toronto ON) of contrast first in the right ventricular cavity then within 3 cardiac cycles the left ventricular cavity. Ten minutes following intravenous injection ventricular tissue opacification due to capillary lodging of the microbubbles is maximum while intravascular contrast has largely cleared. Microbubbles are then cavitated using 4 pulses per level of the low-frequency/high-energy “destruct” mode within the contrast software mode (Visualsonics, Toronto ON). This destruction is performed at levels from cardiac base to apex.

Echocardiographic assessment of mice: Mice are lightly anesthetized with 1-3% inhaled isofluorane and placed on a warming blanket. M-mode echocardiograms are targeted from 2D echos obtained using the Vevo 770 ECHO (Visualsonics, Toronto ON) operating at a 120 Hz frame rate. Left parasternal 2D left ventricular cross-sectional echocardiographic images are obtained. The position and angle of the echo transducer is maintained by directing the beam just off the tip of the anterior leaflet of the mitral valve and by maintaining internal anatomic landmarks constant. All measurements are taken from M-mode traces at end-expiration. Left ventricular internal dimensions will be
measured at end-diastole (defined as the onset of the QRS complex in lead II of the simultaneously obtained electrocardiogram) and at end-systole (defined as minimum internal ventricular dimension).