The eddHF story

The Plot Thickens

Helena C. Parkington, Marianne Tare, Harold A. Coleman

The dilator function of the vascular endothelium is critical for optimal tissue perfusion, and this is brought into stark reality in a number of diseases, such as hypertension, diabetes, and preeclampsia, in which endothelium-dependent vasodilator function is impaired. Prostacyclin and nitric oxide (NO) were the earliest identified endothelium-dependent vasodilators, but it was soon found that in many vascular beds, particularly in resistance vessels, vasorelaxation persisted when production of these autacoids was suppressed. This residual vasorelaxation was invariably associated with hyperpolarization of the vascular smooth muscle and the entity was dubbed “endothelium-derived hyperpolarizing factor” (EDHF).¹ From the outset, the identity of EDHF has been of interest in a number of diseases, such as hypertension, diabetes,³–⁵ hypertension,⁶ and apolipoprotein E-deficient mice.⁷ Thus, EDHF, suggested to provide vasodilation when NO was compromised, was also noted in the poor condition of NO, stepping into the breach when the latter is compromised, especially under conditions of enhanced oxidative stress? Then a beacon of light shone out from Japan, with the demonstration that EDHF assumed greater importance as vessel diameter decreased.² This was a key observation, supporting the importance of EDHF in the region of the vascular system where resistance is primarily determined. This was hotly followed by the revelation that EDHF may be targeted in diseases, diabetes,³–⁵ hypertension,⁶ and apolipoprotein E-deficient mice.² Thus, EDHF, suggested to provide vasodilation when NO was compromised, was also noted under attack in disease. Despite its Cinderella status, investigation into the nature of EDHF has continued with breakneck intensity, with the conviction that EDHF has an important role in tissue perfusion and blood flow. The fact that the acronym has been retained to describe the NO- and prostacyclin-insensitive relaxation reflects the fact that the identity of and mechanism(s) mediating EDHF remain unresolved, and these can be different in the various vascular beds.

Small-conductance, calcium-activated K⁺ channels (Kc⁵,3.1, blocked by charybdotoxin or TRAM-34) are located on the endothelial cells (ECs) and play a pivotal role in the smooth muscle cell (SMC) hyperpolarization that underpins EDHF. A hotly debated issue surrounding the nature of EDHF is whether the hyperpolarization generated in ECs by activation of these channels spreads directly to subjacent SMCs via myoendothelial gap junctions.⁸⁹ Myoendothelial gap junctions are predominantly on EC projections passing through holes in the internal elastic lamina to contact medial SMCs. An alternative view is that K⁺ exiting ECs activates inwardly rectifying K⁺ channels and Na⁺/K⁺-ATPase pumps to induce hyperpolarization secondarily in the SMCs,⁴ although their contribution to the EDHF current, recorded under voltage clamp, are minimal in guinea pig submucosal arterioles.¹¹ It has been demonstrated previously that Kc⁵,3.1 channels are localized to the holes in the internal elastic lamina and are therefore on EC projections.¹² In this issue of Circulation Research, Dora et al show that Na⁺/K⁺-ATPase pumps are also localized to EC projections, suggesting an intimate link between the pump and the Kc⁵,3.1 channel, and they hypothesize that this amplifies EC hyperpolarization.¹³ In arteries that had been treated with carbenoxolone to block gap junctions, the remaining TRAM-34–sensitive relaxation was significantly reduced by ouabain, consistent with previous observations that K⁺ released from Kc⁵,3.1 on EC projections activated Na⁺/K⁺-ATPase pumps located on SMC.¹⁰ However, in the new scheme, would not transfer of the amplified hyperpolarization component in EC be expected to be blocked in carbenoxolone, leaving the ouabain-sensitive component that results from extracellular K⁺ stimulation of SMC pumps? Results with ouabain must be interpreted with caution, because it also has uncoupling effects at gap junctions.¹⁴¹⁵ Progress in defining EDHF mechanisms is hampered by the nonselective actions of currently available pharmacological tools.

The development of antibodies to proteins of interest (ion channels, connexins, etc) has provided valuable insights into their spatial distribution. An elegant study in rat small mesenteric arteries demonstrated that Kc⁵,2.3, colocalized with EC–EC connexons around the periphery of these cells, are clearly spatially separate from Kc⁵,3.1, present on EC projections.¹² Dora et al suggest that Kc⁵,2.3 are also localized on EC projections, along with the Kc⁵,3.1 channels.¹³ The high level of sequence homology between Kc⁵,2.3 and Kc⁵,3.1 channels¹⁶ makes it wise to use more than one antibody source, preferably made to separate epitopes targeting the same channel. Consistent with previous reports, not all internal elastic lamina holes are associated with Kc⁵,3.1 expression, and this reflects the absence of myoendothelial gap

© 2008 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/CIRCRESAHA.108.177279
junctions from some holes. It is intriguing that close to 100% of holes appear to be associated with EC Na+/K+-ATPase pump expression in this article.

The scheme proposed by Dora et al13 sets out the relationship between the important ion channels, gap junctions, and pumps involved in the generation of EC hyperpolarization and its transfer to the SMC in rat small mesenteric artery (Figure). It is envisaged that hyperpolarization resulting from K_{Ca2.3} activation spreads through myoendothelial gap junctions. Thus, it is intriguing that, in unstimulated arteries at rest, the hyperpolarization recorded in SMCs is ∼20 mV in amplitude but in ECs, is <10 mV. Additional hyperpolarization generated in SMCs by Na+/K+-ATPase pump activity would be expected to flow back and be recorded in the ECs. Despite the comprehensive nature of the proposed scheme, it is clear that the nature and mechanisms of EDHF remain unresolved.

Another piece of the puzzle that needs to be incorporated into the overall scheme is the role of inositol trisphosphate–mediated Ca²⁺ release. In mouse mesenteric artery, Ledoux et al elegantly showed evidence for functional focal Ca²⁺ release at sites associated with myoendothelial gap junctions, where localization of endoplasmic reticulum and associated inositol trisphosphate receptors occur in EC projections in close proximity to myoendothelial gap junctions and K_{Ca3.1}. Membrane potential clearly plays a significant role in vascular tone in the smallest arteries/arterioles. Although NO and prostanoid can evoke hyperpolarization, their impact on membrane potential is modest, shifting this burden onto EDHF. EDHF is implicated in spreading vasodilation, important in recruiting vasodilation in larger arteries feeding blood to regions of greatest cellular activity. There is also the issue of the importance of EDHF in vivo. Deletion of either K_{Ca2.3} or K_{Ca3.1} results in elevated blood pressure. However, a significant volume of elegant data provides a serious challenge to the notion that direct current spread from ECs to SMCs via myoendothelial gap junctions operates in healthy arteries supplying skeletal muscles of laboratory species in vivo.24,25 A previous study by Ledoux et al and the present work by Dora et al indicate that subtle, localized differences in calcium may have profound implications for rapid recruitment of endothelial K_{Ca} channels. Myoendothelial gap junctions and K_{Ca} channels are also involved. Thus, we must strive harder to resolve how the pieces of this tricky jigsaw puzzle fit together. These issues, together with the fate of EDHF in disease, render the gaps in our understanding of the nature of EDHF and how it operates unacceptable if we are serious about improving treatment of vascular disease.

Sources of Funding

Work performed by the authors is supported by the National Health and Medical Research Council of Australia, Australian Research Council, and Diabetes Australia Research Trust.

Disclosures

None.

References

Figure. At 2.5 mmol/L extracellular calcium, the EC calcium-sensing receptor is activated and K_{Ca3.1} is nonconducting and not available. Increasing EC cytoplasmic calcium activates K_{Ca2.3}, hyperpolarizing (V_m) ECs, which is transmitted to SMCs via myoendothelial gap junctions. Opening of SMC voltage-gated calcium channels reduces extracellular calcium, removing calcium-sensing receptor activation and making K_{Ca3.1} available. Potassium efflux through K_{Ca3.1} stimulates local Na+/K+ pumps. The additional hyperpolarization resulting from the activity of both K_{Ca3.1} and the pumps amplifies EC hyperpolarization and hence EDHF-mediated responses in SMCs.

Key Words: EDHF [Kcα2.3] [Kcα3.1] Na/K ATPase endothelium
The EDHF Story: The Plot Thickens
Helena C. Parkington, Marianne Tare and Harold A. Coleman

Circ Res. 2008;102:1148-1150
doi: 10.1161/CIRCRESAHA.108.177279

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/102/10/1148

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/