Vertebrates have evolved 2 types of blood vessels—arteries and veins—that function to supply oxygen and nutrients and remove cellular waste. To efficiently accomplish these specialized functions, arteries and veins have developed distinct morphological and molecular differences. As a result, the endothelial cells that compose arteries and veins are vastly different in their biochemical and cellular properties. During development, the nascent endothelial cells generated from hemangioblasts or angioblasts undergo tightly regulated specification and differentiation processes to adopt either the arterial or venous endothelial fate. Differentiated endothelial cells migrate and aggregate to form either arteries or veins according to their adopted fate. Dysregulation of these regulated events often results in devastating consequences. For instance, failure to segregate arterial and venous endothelial cells causes potentially fatal clinical consequences. For instance, failure to segregate arterial and venous endothelial cells causes potentially fatal clinical conditions such as arteriovenous malformation, hereditary hemorrhagic telangiectasia, and cerebral cavernous malformation.

Significant progress has been made in understanding how nascent endothelial cells adopt the arterial fate, resulting in identification of several key signaling molecules and their intracellular transducers involved in the specification of arterial endothelial cells. However, transcription factors that function downstream of these signaling cascades are largely unknown to date. Recently, hey2/Gridlock, a member of the hairy and enhancer of split-related family of bHLH intracellular transducers involved in the specification of arterial endothelial cells. However, transcription factors that function downstream of these signaling cascades are largely unknown to date. Recently, hey2/Gridlock, a member of the hairy and enhancer of split-related family of bHLH DNA-binding motif commonly known as the high mobility group domain. Sox family transcription factors are DNA binding proteins that have a high degree of sequence homology to the testis-specific protein Sry. They contain a characteristic DNA-binding motif commonly known as the high mobility group domain. Sox family transcription factors can be further divided into 10 subgroups: SoxA to SoxJ. Sox protein transcription factors appear to have important roles in various developmental process, including fate specification and organogenesis. For instance, Sox2 is critical for maintenance of neural stem cell fate, and Sox13 is essential for specification of γδ T cells. In zebrafish, the endodermless casanova phenotype is caused by a mutation in Sox3. indicating that Sox transcription factors are essential for establishing endoderm fate during development.

Sox transcription factors that belong to the SoxF subgroup, such as Sox7, Sox17, and Sox18, are highly expressed in the developing vasculature. Among these members, the functions of Sox17 and Sox18 are relatively well studied. Sox17- and Sox18-null mice have been previously generated. Despite their expression pattern, neither Sox17- nor Sox18-null mice exhibit any obvious vascular defects, although double nulls of Sox17 and Sox18 display a wide range of vascular defects including defective dorsal aorta formation. However, these 2 transcription factors do not appear to be essential regulators for vascular development individually: morpholinos targeting either one of these 2 genes does not display any discernable vascular defects. Intriguingly, when blocked simultaneously, attenuation of Sox7 and Sox18 function causes a loss of circulation in the posterior part of embryos, which eventually leads to the development of a circulatory loop in the anterior part of the affected embryos.

To elucidate the etiology of this peculiar phenotype, the authors investigated the molecular properties and cellular architecture of endothelial cells in embryos coinfected with Sox7 and Sox18 morpholinos. In these embryos, the authors found that the specification of arterial endothelial cells is severely disrupted, which is often accompanied by failure of segregation of arteries from veins. Based on their observation, the authors concluded that Sox7 and Sox18, although dispensable for vascular development individually, synergistically function to promote the specification of arterial endothelial cells.

The biochemical nature of how Sox7 and Sox18 interact remains to be discovered. Nevertheless, the article by Herpers et al clearly demonstrates that these Sox proteins together regulate the specification of arterial fate. Sox7 has been implicated as a potential modulator of many developmentally essential signaling pathways, such as fibroblast growth factor, Wnt/β-catenin, and Nodal. It will therefore be extremely interesting to see how the interaction between...
Sox7 and Sox18 modifies Sox7-mediated activation of these critical signaling pathways to promote the specification of arterial endothelial cells. In addition, open questions remain about the direct transcriptional targets of these transcription factors within angioblasts and how the Sox7/Sox18-dependent gene expression program culminates in artery–vein segregation. The studies by Herpers et al,10 the authors demonstrate the indispensable function of Delta-like 4 (Dll4) also appears to be critical in arterial specification. To date, relatively few transcription factors have been identified that regulate this process (ie, FoxC1/ FoxC2, Hes-related protein, and FoxH1). In the article by Herpers et al,10 the authors demonstrate the indispensable function of Sox7 and Sox18 for the specification of arterial endothelial cells.

Disclosures

None.

References


Key Words: arterial specification ■ Sox protein ■ zebrafish
Partners in Crime: How Two Sox Proteins Cooperate to Specify Arterial Fate
Suk-Won Jin and Cam Patterson

doi: 10.1161/CIRCRESAHA.107.168237

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/102/1/1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/