Ca2+/Calmodulin Kinase II–Dependent Phosphorylation of Ryanodine Receptors Suppresses Ca2+ Sparks and Ca2+ Waves in Cardiac Myocytes

Abstract—The multifunctional Ca2+/calmodulin-dependent protein kinase II \(\delta \) (CaMKII\(\delta \)) is found in the macromolecular complex of type 2 ryanodine receptor (RyR2) Ca2+ release channels in the heart. However, the functional role of CaMKII-dependent phosphorylation of RyR2 is highly controversial. To address this issue, we expressed wild-type, constitutively active, or dominant-negative CaMKII\(\delta \) via adenoviral gene transfer in cultured adult rat ventricular myocytes. CaMKII-mediated phosphorylation of RyR2 was reduced, enhanced, or unaltered by dominant-negative, constitutively active, or wild-type CaMKII\(\delta \) expression, whereas phosphorylation of phospholamban at Thr17, an endogenous indicator of CaMKII activity, was at 73%, 161%, or 115% of the control group expressing \(\beta \)-galactosidase (\(\beta \)-gal), respectively. In parallel with the phospholamban phosphorylation, the decay kinetics of global Ca2+ transients was slowed, accelerated, or unchanged, whereas spontaneous Ca2+ spark activity was hyperactive, depressed, or unchanged in dominant-negative, constitutively active, or wild-type CaMKII\(\delta \) groups, respectively. When challenged by high extracellular Ca2+, both wild-type and constitutively active CaMKII\(\delta \) protected the cells from store overload–induced Ca2+ release, manifested by a \(\sim 60\% \) suppression of Ca2+ waves (at 2 to 20 mmol/L extracellular Ca2+) in spite of an elevated sarcoplasmic reticulum Ca2+ content, whereas dominant-negative CaMKII\(\delta \) promoted Ca2+ wave production (at 20 mmol/L Ca2+) with significantly depleted sarcoplasmic reticulum Ca2+. Taken together, our data support the notion that CaMKII\(\delta \) negatively regulates RyR2 activity and spontaneous sarcoplasmic reticulum Ca2+ release, thereby affording a negative feedback that stabilizes local and global Ca2+-induced Ca2+ release in the heart.

(Circ Res. 2007;100:399-407.)

Key Words: Ca2+/calmodulin-dependent protein kinase II \(\blacklozenge \) Ryanodine receptor \(\blacklozenge \) Ca2+ sparks \(\blacklozenge \) Ca2+ waves \(\blacklozenge \) Ca2+-induced Ca2+ release

The type 2 ryanodine receptor (RyR2) Ca2+ release channels in the sarcoplasmic reticulum (SR) constitute a key component of excitation–contraction (EC) coupling in cardiac myocytes. Activated by the Ca2+-induced Ca2+ release (CICR) mechanism, they are responsible for generating 70% to 90% of the transient increase of intracellular Ca2+(CICR) mechanism, they are responsible for generating 70% to 90% of the transient increase of intracellular Ca2+ that drives the heartbeat.\(^1\) Under Ca2+ overload conditions, RyRs mediate spontaneous Ca2+ waves\(^2,3\) or store overload–induced Ca2+ release (SOICR),\(^4\) which is thought to be arrhythmogenic for disturbance of cardiac electrical activity. Given its central role in cardiac EC coupling and Ca2+ signaling, RyR2 activity is under the exquisite control of an array of molecular partners found in the RyR2 macromolecular signaling complex, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein kinase C, and protein phosphatases 1, 2A, and 2B (calcineurin).\(^5,6\) Among these, CaMKII-dependent phosphorylation of RyR2 is of particular interest, because the waxing and waning of high microdomain Ca2+ accompanying the channel gating might activate and deactivate this kinase, affording a local feedback regulation to SR Ca2+ release.\(^7\)

Early studies have suggested that RyR2 possesses a unique CaMKII phosphorylation site at Ser2809, which is also phosphorylated by PKA to a lesser extent.\(^8\) In contrast, more recent studies proposed that Ser2809 is a PKA-specific phosphorylation site in RyR2,\(^6,9\) whereas our own data...
support that Ser2809 is not an exclusive PKA-dependent phosphorylation site, but is also phosphorylated by CaMKII and other kinases. Furthermore, a 4:1 stoichiometry for CaMKII:PKA phosphorylation of RyR2 has been inferred from metabolic labeling. With the recent identification of Ser 2030 as a novel PKA-specific site, it appears that phosphorylation of Ser2809 alters the RyR2 single-channel activity of mutant RyR2 have also challenged the view that phosphorylation of Ser2809 alters the RyR2 phosphorylation activates the channel by increasing open channel probability (Po). However, Hain et al. found that activation of endogenous CaMKII led to RyR2 channel closure, whereas exogenous CaMKII activated the channel. Using photolytic Ca2+ steps, Valdivia et al. showed that RyR2 response to CaMKII- or PKA-dependent phosphorylation is rather complex, characterized by a higher peak Po, a markedly accelerated “adaptation,” and a reduced steady-state Po. The results from studies using swine and rabbit SR vesicles suggested that the intracellular signaling pathway leading to CaMKII activation reduced Ca2+ efflux from the SR by inhibiting RyR2 channel activity. By inclusion of constitutive active CaMKII in the patch pipette under whole-cell patch-clamp conditions, Anderson and colleagues demonstrated that CaMKII reduced depolarization-triggered Ca2+ release from the SR and elevated SR Ca2+ content. In a series of studies, Marks and colleagues advocated the idea that PKA phosphorylation at Ser2809 displaces calstabin from the channel complex, that CaMKII phosphorylation at Ser2815 does not, and that these 2 distinct mechanisms both result in an increase in Ca2+ sensitivity, resulting in Ca2+ instability that might contribute to arrhythmias and contractile dysfunction in heart failure. In contrast, Valdivia and colleagues demonstrated that, in the canine heart failure model and human failing hearts, there were no detectable changes in RyR phosphorylation, calstabin dissociation, or single-channel properties. Measurements of single-channel activity of mutant RyR2 have also challenged the view that phosphorylation of Ser2809 alters the RyR2 channel function. On the other hand, overexpression of CaMKIIα in transgenic mice, the predominant cytosolic isoform in the heart, results in dilated cardiomyopathy and heart failure, whereas myocytes isolated from these hearts exhibit hyperactive Ca2+ sparks and a “leaky” SR. CaMKII activation Ca2+ sparks was further demonstrated in permeabilized cardiac myocytes isolated from phospholamban (PLB) knockout mice using pharmacological approaches. In the present study, we used acute adenoviral gene transfer in intact cultured adult cardiac myocytes from rat, which complements and extends previous studies. Specifically, we implemented bidirectional manipulation of CaMKII activity and exploited Ca2+ sparks, Ca2+ transients, and Ca2+ waves as the physiological readouts in an attempt to further delineate the possible role of CaMKIIδ, phosphorylation in regulating RyR function in cardiac myocytes.

Materials and Methods

Construction of Viral Vectors
Hemagglutinin (HA)-tagged constitutively active CaMKIIδ (CA CaMKII) was generated by replacing the residue Thr287 with aspartic acid (T287D) using the transformer site directed mutagenesis kit (Clontech). Dominant-negative CaMKIIδ (DN CaMKII) was generated by replacing the residue Lys43 with alamine (K43A). The generation and amplification of adenoviruses harboring the target gene were performed in HEK293 cells.

Cell Culture and Adenoviral Infection
Single cardiac myocytes were isolated from the hearts of 2- to 3-month-old Sprague-Dawley rats using a standard enzymatic technique, then cultured and infected with adenoviral vectors at a multiplicity of infection (moi) of 100. Myocytes were plated at a density of 0.5 to 1×10^5/cm^2 on coverslips or in dishes precoated with 10 μg/mL laminin. The culture medium was medium 199 (Sigma) in the presence of (in mmol/L) creatine 5, L-carnitine 2, taurine 5, insulin/transferrin/selenium-X 0.1%, penicillin and streptomycin 1%, and HEPES 25 (pH=7.4 at 37°C). Experiments were performed in cells cultured for 24 hours following infection. Procedures were performed according to Guiding Principles in the Care and Use of the Animals approved by the Council of the American Physiological Society.

Western Blotting and Immunostaining
To quantify the expression of wild-type (WT) and mutant CaMKIIδ, cell lysates (30–50 μg protein) were loaded in a Ca2+-free loading buffer containing 20 mmol/L EDTA and immunoblotted using anti-HA antibody (1:5000, Berkeley Antibody Co) and horseradish peroxidase–conjugated secondary antibody (Bio-Rad). Other antibodies include the site-specific antibody reacting with PLB phosphorylated at Thr17 (1:10 000, Badrilla, Leeds, UK), anti-total PLB antibody (1:5000, Badrilla), anti-RyR2 antibody (1:5000, ABR), and site-specific antibodies recognizing the phosphorylated RyR2 at Ser2809 (1:5000, Badrilla, UK) and at Ser2030.

For immunostaining, cells were incubated with anti-HA antibody (1:1000) at 4°C overnight after fixation and blocking and then stained with Cy5-conjugated secondary antibody (1:500, Jackson ImmunoResearch). Confocal images were obtained using a Zeiss 7.4. The precipitated proteins were generated by replacing the residue Lys43 with alanine (K43A).

CaMKII Activity Assay
To measure CaMKII activity, cell lysate (200 μg of protein) was first immunoprecipitated with anti-CaMKII antibody (1:100) in a medium containing (in mmol/L) Tris-HCl 20, NaCl 150, Na2-EDTA 1, EGTA 1, Triton 1%, sodium pyrophosphate 2.5, β-glycerophosphate 1, Na3VO4 1, leupeptin 1 μg/mL (pH=7.4). The precipitated proteins were then incubated with a specific peptide substrate (KKALRQETVDAL) to evaluate the kinase activity according to the recommendations of the manufacturer (Upstate Biotechnology Inc), as previously described.

Ca2+ Measurements
Myocytes were loaded with the Ca2+ indicator fluo-4 acetoxyethyl ester (fluo-4 AM) (20 μmol/L, 30 minutes) (Invitrogen) and Ca2+ sparks, Ca2+ transients, and Ca2+ waves were observed with Zeiss confocal microscope. To measure Ca2+ transients, myocytes were paced at 1.0 Hz with perfusion solution containing (in mmol/L) NaCl 137, KCl 4.9, CaCl2 1, MgSO4 1.2, Na2HPO4 1.2, glucose 15, and HEPES 20 (pH=7.4). For ratiometric measurement of cytosolic free Ca2+ concentration, cells were loaded with 25 μmol/L indo-1/AM for 30 minutes (Invitrogen). To measure the SR Ca2+ content with either indo-1 or fluo-4 AM loading, 20 mmol/L caffeine was rapidly
applied to the cell locally. For spontaneous contractile wave measurement, the perfusion solution contained (in mmol/L) NaCl 138.2, KCl 4.6, MgCl₂ 1.2, glucose 15, and HEPES (pH = 7.4) at various Ca²⁺ concentrations (1, 2, 5, 10, or 20), without readjusting the osmolarity and ionic strength. All measurements were performed at room temperature (22°C to 23°C). Image processing, data analysis, and presentation were performed using IDL software (version 6.1, Research Systems Inc Co).

Back-Phosphorylation of RyR2
Homogenates (500 μg) were suspended in 0.5 mL of buffer (50 mmol/L Tris-HCl, pH 7.4), 0.9% NaCl, 0.5 mmol/L NaF, 0.5 mmol/L Na₃VO₄, 0.25% Triton X-100, and protease inhibitors (50 mmol/L Tris-HCl, pH 7.4), 0.9% NaCl, 0.5 mmol/L NaF, 0.5 mmol/L Na₃VO₄, 0.25% Triton X-100, and protease inhibitors and immunoprecipitated with anti-RyR2 antibody (1:300). The immunoprecipitated RyR2 was then incubated for 45 minutes at room temperature in 10 μL of preactivated 1× CaMKII reaction buffer (50 U; BioLabs), MgATP (100 μmol/L), and 10% [³²P]ATP for back-phosphorylation assay. The CaMKII inhibitor KN-93 (10 μmol/L) was added to the reaction solution as negative control. After SDS-PAGE, the level of RyR2 protein and the associated autoradiography were determined using an anti-RyR2 antibody (1:5000) and autoradiography, respectively. The densities of total RyR2 and autoradiography were quantified using Multi-Analyst (Bio-Rad).

Statistics
Data were reported as mean±SEM. Student’s t test, paired t test, or Kruskal–Wallis test was applied, when appropriate, to determine statistical significance of the differences. A probability value of less than 0.05 was considered statistically significant.

Results

Manipulation of CaMKIIδC Activity in Cardiac Myocytes
To up- and downregulate CaMKIIδC activity, ventricular myocytes were infected with adenoviral vectors carrying the target gene for WT and mutant CaMKIIδC at moi of 100 and cultured for 24 hours. Confocal immunocytochemical imaging (Figure 1A) visualized that the WT and mutant CaMKIIδC were similarly localized to the cytoplasm and the surface membrane including the transverse tubules, consistent with previous reports. Using Western blotting with an antibody recognizing the HA epitope, we found comparable expression for the mutants (CA and DN CaMKIIδC) and higher expression for CaMKIIδC (Figure 1B). Direct measurement of the Ca²⁺-independent kinase activity was assessed in preactivated form in resting cells at 1 mmol/L extracellular Ca²⁺. In the DN, WT, and CA CaMKIIδC groups, the Ca²⁺-dependent kinase activity relative to the β-gal group was 0.19±0.08 (n=3, P<0.01), 1.8±0.3 (n=3, P<0.05), and 4.0±0.4 (n=4, P<0.01), respectively. PLB, a key physiological regulator of SR Ca²⁺-ATPase (SERCA), bears a PKA-specific phosphorylation site Ser16 and a CaMKII-specific phosphorylation site Thr17. Phosphorylation of either is sufficient to remove PLB inhibition of SERCA, leading to accelerated SR Ca²⁺ recycling and hastened cardiac relaxation. Compared with cells infected with adenov-β-gal at the same moi, the expression of CA and DN CaMKIIδC resulted in a 0.6-fold increase and 0.3-fold decrease, respectively, of PLB Thr17 phosphorylation, whereas WT CaMKIIδC expression did not affect the PLB phosphorylation (Figure 1C and 1D). Notably, total PLB level was unchanged among the groups, suggesting no compensatory change in PLB expression.

Effect of CaMKIIδC on the Decay of Ca²⁺ Transients
Using the aforementioned cell models, we examined the overall effects of CaMKIIδC activation on intracellular Ca²⁺ transients and contraction. Figure 2A shows typical examples of fluo-4 line-scan images and their corresponding time courses from cells expressing WT, CA, and DN CaMKIIδC. CA CaMKIIδC expression induced a profound positive relaxant effect at the single-cell level (Figure 2A and 2D). The T50 was reduced by ≈15% compared with WT CaMKIIδC or β-gal. Conversely, DN CaMKIIδC expression prolonged the T50 by ≈15% (Figure 2A and 2D). Enhanced CaMKII activity accelerates cardiac relaxation and reduced CaMKII activity slows the decay of Ca²⁺ transients. These changes occurred in parallel with the changes in the status of PLB Thr17 phosphorylation (Figure 1C and 1D), in agreement with previous reports.

Interestingly, we found no significant effects of CaMKIIδC (WT, CA, or DN) on the amplitudes of the Ca²⁺ transients
(Figure 2B) or contraction (Figure 2C). Because the CaMKII-mediated enhancement of L-type Ca\(^{2+}\) currents (Figure 1 in the online data supplement, available at http://circres.ahajournals.org)\(^{28,32}\) and SR Ca\(^{2+}\) recycling\(^{30,31,33}\) (Figure 2D) would predict a positive (or negative) inotropic effect in response to enhanced (or reduced) CaMKII activity, this result provided the first clue that CaMKII may also negatively regulate some key component(s) of EC coupling, giving rise to a net null effect on cardiac inotropy.

Phosphorylation of RyR2 by CaMKII\(^{C}\)

We measured the status of RyR2 phosphorylation in response to the expression of WT and mutant CaMKII\(^{C}\) by using the back-phosphorylation assay. Figure 3A shows a representative autoradiograph of \(^{32}\)P-ATP incorporation into RyR2 after CaMKII phosphorylation in vitro and Western blotting analysis of the corresponding RyR2 protein. As a negative control, we showed that inhibition of CaMKII by KN-93 completely blocked back-phosphorylation of RyR2 (Figure 3A and 3B). We found no difference in the \(^{32}\)P-RyR/total RyR densitometric ratio between \(-\text{gal}\) control (0.653±0.046, \(n=6\)) and WT CaMKII\(^{C}\) (0.630±0.078, \(n=6\)) but a significant decrease in the CA CaMKII\(^{C}\) group (0.159±0.017, \(n=6, P<0.001\)) and an increase in the DN CaMKII\(^{C}\) group (0.857±0.054, \(n=6, P<0.05\)), respectively. Hence, RyR2 was hyperphosphorylated in the CA CaMKII\(^{C}\) group and hypophosphorylated in the DN CaMKII\(^{C}\) group compared with WT CaMKII\(^{C}\) and \(-\text{gal}\).

To test the possibility that RyR2 phosphorylation by PKA might also be altered via crosstalk between CaMKII and PKA pathways, we used a site-specific antibody reacting with phospho-Ser2030, a PKA-specific site in cardiac myocytes.\(^{10}\) Western blotting clearly showed that there is no detectable signal in all 4 groups (Figure 3B, bottom). In the positive control group, the same antibody detected PKA phosphorylation of purified RyR2 expressed in HEK 293 cells.
Using a phospho-Ser2809–specific antibody, we found significant basal phosphorylation of RyR2 in the β-gal group, whereas no significant changes were found among the WT and DN CaMKII\(\delta_C\) and β-gal groups (Figure 3B), except for a slight hyperphosphorylation in the CA CaMKII\(\delta_C\) group (2.18±0.16 versus 1.55±0.09 of β-gal control; n=5 for both groups, P<0.05). This observation supports the notion that Ser2809 retains some sensitivity to CaMKII.21 Unlike the CaMKII\(\delta_C\) transgenic animal model,24 acute CaMKII\(\delta_C\) manipulation did not alter the RyR protein level (Figure 3A and 3B).

CaMKII\(\delta_C\) Modulation of Ca\(^{2+}\) Sparks

Characteristics of Ca\(^{2+}\) sparks are informative in characterizing CICR sensitivity, RyR gating, and SR Ca\(^{2+}\) leakage in intact cells. The frequency of spontaneous Ca\(^{2+}\) sparks was diminished from 2.75±0.30 (n=35 cells from 6 hearts) in the β-gal group to 1.64±0.17 Hz/100 μm (n=50, P<0.05) in CA CaMKII\(\delta_C\) group (Figure 4B). In contrast, DN CaMKII\(\delta_C\) induced hyperactive Ca\(^{2+}\) sparks, increasing the spark frequency to 4.21±0.45 Hz/100 μm (n=56, P<0.01 versus β-gal) (Figure 4B). In WT CaMKII\(\delta_C\), there was a trend of decreasing spark frequency (2.33±0.28, n=60), which did not reach statistical significance. Properties of individual Ca\(^{2+}\) sparks were largely unchanged among groups, with 2 exceptions (Figure 4C and supplemental Figures II and III). The spark rising time, which reflects the termination kinetics of the release channel opening, was significantly prolonged in the DN CaMKII\(\delta_C\) compared with the WT group (21.12±0.44 ms, n=611, versus 19.44±0.60 ms, n=274, P<0.01) (supplemental Figure II). DN CaMKII\(\delta_C\) also slightly reduced spark amplitude (Figure 4C) despite the longer rising time and unchanged SR Ca\(^{2+}\) content (Figure 4C), suggesting smaller Ca\(^{2+}\) release fluxes in Ca\(^{2+}\) sparks on CaMKII inhibition. Taken together, CaMKII inhibition and RyR hypophosphorylation cause a “leaky” SR, whereas CaMKII activation and RyR hyperphosphorylation suppress spontaneous SR Ca\(^{2+}\) release.

Acute manipulation of CaMKII activity in cultured cells did not affect the overall Ca\(^{2+}\) homeostasis in quiescent cells at 1 mmol/L extracellular Ca\(^{2+}\). Ratiometric Ca\(^{2+}\) measurements with indo-1 as the Ca\(^{2+}\) indicator revealed no significant change in either the resting Ca\(^{2+}\) level (r410/490) (Figure 5B) or the caffeine-labile SR Ca\(^{2+}\) content (Figure 5C) among the groups (see below for results at 20 mmol/L). Moreover, the half-decay time of caffeine-induced Ca\(^{2+}\) transients, an index of Ca\(^{2+}\) clearance by Na\(^{+}/Ca^{2+}\) exchange, showed no detectable difference either (Figure 5D).

CaMKII\(\delta_C\) Suppresses Ca\(^{2+}\) Waves

The above results suggest that CaMKII stabilizes, rather than destabilizes, Ca\(^{2+}\) signaling. If such stabilization were the case, it might be expected that CaMKII activation would reduce the occurrence of spontaneous Ca\(^{2+}\) waves or SOICR.4,35,36 To test this possibility, we challenged the cells with increasing concentrations of extracellular Ca\(^{2+}\) to create Ca\(^{2+}\)-overload conditions. Resting cells expressing β-gal exhibited a low frequency of Ca\(^{2+}\) waves at 1 mmol/L Ca\(^{2+}\) (0.19±0.07 min\(^{-1}\), n=42 cells from 3 hearts). By raising extracellular Ca\(^{2+}\) concentrations gradually to 2, 5, 10, and 20 mmol/L, the wave frequency was increased progressively and reversibly, up to 11.8±1.1 min\(^{-1}\) (Figure 6A and 6B). CA CaMKII\(\delta_C\) markedly reduced the genesis of Ca\(^{2+}\) waves at all Ca\(^{2+}\) concentrations higher than 2 mmol/L (Figure 6B). Interestingly, in the WT CaMKII\(\delta_C\) group, the Ca\(^{2+}\) wave frequency was suppressed to ~30% of that in β-gal, as if WT
CaMKIIΔC became activated at high extracellular Ca\(^{2+}\). DN CaMKIIΔC exerted an opposite effect on Ca\(^{2+}\) stability, evidenced by a 37% increase in Ca\(^{2+}\) wave frequency at 20 mmol/L Ca\(^{2+}\) (Figure 6A and 6B). Nevertheless, the propagation velocity and amplitude of Ca\(^{2+}\) waves were almost identical in all groups (supplemental Figure IV).
Although no significant changes in the SR Ca\(^{2+}\) content were observed at 1 mmol/L Ca\(^{2+}\) (Figure 5C), high Ca\(^{2+}\) challenge did bring out the differences: increasing the SR content by WT and CA CaMKII\(\delta_c\) and depleting it by DN CaMKII\(\delta_c\), as measured at 20 mmol/L Ca\(^{2+}\) (Figure 6C). The reciprocal regulation of Ca\(^{2+}\) wave frequency and SR Ca\(^{2+}\) content suggests that CaMKII phosphorylation of RyR2 raises the threshold of SR luminal Ca\(^{2+}\) concentration at which SOICR occurs.

Discussion

In the present study, we have provided experimental evidence pointing to the unexpected finding that phosphorylation of RyR2 by CaMKII negatively regulates Ca\(^{2+}\) spark and Ca\(^{2+}\) wave activities, thus serving as a stabilizing factor for SR Ca\(^{2+}\) release in intact cardiac myocytes. This result is in sharp contrast to the prevalent view that RyR2 phosphorylation by CaMKII enhances RyR2 Ca\(^{2+}\) sensitivity and causes leaky SR and Ca\(^{2+}\) instability.\(^{24,33}\)

Models of Altered CaMKII Activity

The controversy of CaMKII modulation on RyR function may arise in part from methodological limitations. Results from studies using cell-free system may not be directly relevant to intact cells, and experiments using intracellular CaMKII dialysis may not be readily reproducible because of technical difficulties. The transgenic animal approach also has its own limitations as a result of plasticity, adaptation, and maladaptation typical of any biological systems. Indeed, transgenic CaMKII\(\delta_c\) overexpression is accompanied by a substantial remodeling of the Ca\(^{2+}\) signaling system, characterized by remarkable downregulation of RyR2, PLB, and SERCA and substantial upregulation of Na\(^{+}\)/Ca\(^{2+}\) exchange.\(^{24}\) In this study, we have established 3 cell models expressing WT, CA, and DN CaMKII\(\delta_c\), respectively. These ex vivo cellular models allow for bidirectional genetic manipulation of CaMKII activity, with minimal compensatory changes in the other components of the Ca\(^{2+}\) signaling system. Similar efforts have also been made previously to express WT CaMKII\(\delta_c\) in cultured rabbit ventricular myocytes,\(^{33}\) although an opposite conclusion on CaMKII modulation of RyR function has been drawn (see below).

Validating criteria of the current models include CaMKII expression and localization, direct measurement of the kinase activity, and CaMKII phosphorylation of PLB and RyR2. Physiological readouts, including the decay time of action potential–elicited Ca\(^{2+}\) transients (Figure 2A and 2D) demonstrate either an enhanced or depressed SR Ca\(^{2+}\) recycling on CaMKII activation or inhibition, as expected. As an advantage of acute genetic manipulation, we detected little unwanted alterations in the Ca\(^{2+}\) signaling system: the expression levels of PLB and RyR2 remain unchanged and the Na\(^{+}\)/Ca\(^{2+}\) exchange activity indexed by the decay kinetics of caffeine-induced Ca\(^{2+}\) transients remains intact in all groups. A combination of multiple models further permitted us to detect reciprocal changes in response to up- or down-manipulation of CaMKII activity. Hence, the present cell models should be useful for investigation of direct CaMKII actions with minimal secondary long-term effects caused by remodeling of the Ca\(^{2+}\) signaling system.

Negative Regulation of RyR2 Activity by CaMKII\(\delta_c\)

One of the main findings of the present study is that enhanced CaMKII activation reduces the rate of occurrence of spontaneous Ca\(^{2+}\) sparks and Ca\(^{2+}\) waves, whereas inhibition of CaMKII activity exerts an opposite effect. Examination of spark properties has led to the insight that CaMKII modulation of sparks is predominantly via the frequency-dependent modulation mechanism. At the cellular level, the CaMKII-mediated inhibitory effect on SR Ca\(^{2+}\) release should negate the CaMKII effects on enhancing L-type Ca\(^{2+}\) channel current\(^{28,32}\) and SR Ca\(^{2+}\) recycling,\(^{30,31,33}\) explaining the lack of change in the peak of Ca\(^{2+}\) transients elicited by action potentials.

In cultured rabbit ventricular myocytes expressing WT CaMKII\(\delta_c\), however, Kohlhaas et al.\(^{33}\) detected a large reduction of the SR Ca\(^{2+}\) content and, after “normalizing” the spark frequency by the corresponding depleted SR Ca\(^{2+}\) content, an 88% increase in spark production, reaching a conclusion that is opposite from ours. The discrepancies between the rat and rabbit results may reflect genuine species-dependent differences. To this end, it is well known that cardiac Ca\(^{2+}\) transients and contraction display postrest potentiation in the rat and postrest depression in the rabbit. Nevertheless, the normalization procedure used needs to be justified because our previous studies in the rat have shown that unloading the SR Ca\(^{2+}\) below its physiological level does not affect Ca\(^{2+}\) spark production.\(^{37}\)

The most compelling evidence for CaMKII-mediated negative regulation of spontaneous SR Ca\(^{2+}\) release came from investigating global Ca\(^{2+}\) release. We found that CaMKII activation protects myocytes from arrhythmogenic Ca\(^{2+}\) waves under Ca\(^{2+}\)-overload conditions, and the opposite is true for CaMKII inhibition. The protective effect is so powerful that the Ca\(^{2+}\) wave frequency is reduced by more than 50% over a wide range of extracellular Ca\(^{2+}\) (2 to 20 mmol/L) in cells expressing CA or WT CaMKII. Because the wave frequency reduction occurs in spite of an elevated SR Ca\(^{2+}\) load, CaMKII activation apparently increases the threshold of SOICR. Thus, based on both Ca\(^{2+}\) spark and Ca\(^{2+}\) wave measurements, we conclude that CaMKII negates regulates the SR Ca\(^{2+}\) release. This conclusion is in general agreement with the observation that intracellular dialysis of constitutively active CaMKII suppresses SR Ca\(^{2+}\) release\(^{17}\) and that protein phosphatases PP1 and PP2A enhance spontaneous Ca\(^{2+}\) sparks in chemically permeabilized myocytes.\(^{38}\)

How can the vast discrepancies across different studies (see the introduction) reconciled? One possibility is that CaMKII phosphorylation and functional modulation of RyR2 might be more complex than had been thought previously. If there were 8 CaMKII phosphorylation sites per monomer as suggested by metabolic labeling,\(^{11}\) there would be 9 (0 to 8) phosphorylation levels and 256 combinations of phosphorylation patterns. The possibilities are expanded to 33 (0 to 32) phosphorylation levels and \(\approx 10^{10}\) patterns of phosphorylation for a tetrameric RyR and are increased astronomically for
some 50 to 200 RyRs assembled in a Ca2+ release unit.39 Added to the complexity, the functionality of CaMKII phosphorylation might be context sensitive, depending on PKA phosphorylation of the channel, binding of calstabin and other regulatory proteins, and the species of animals. The distinct phenotypes in transgenic animal models and ex vivo cell models reported here testify that it is also necessary to isolate direct CaMKII effects from those that are convoluted with changes of the Ca2+ signaling system. In perspective, there is still much to be learned about the intricacy and exquisiteness of CaMKII regulation of cardiac RyR2 function.

Possible Physiological Significance

The CICR, with its inherent positive-feedback nature, provides the speed, the sensitivity, and the high-gain amplification that are much needed for cardiac Ca2+ signaling. Equally important, it is necessary to enforce signaling stability for local Ca2+ release events (spark termination, refractory to reactivation) and global Ca2+ transients (suppression of unwanted Ca2+ waves). In this scenario, our data indicate that CaMKII affords a molecular mechanism that negates the positive feedback of the CICR. Activated by high local Ca2+, CaMKII phosphorylates RyR2 and consequentially reduces the Ca2+ sensitivity of the channel and increases the threshold for SOICR, imposing a frequency-dependent modulation of local and global spontaneous SR Ca2+ release.

The above finding shows that CaMKII-dependent RyR2 phosphorylation might not be the underlying cause for the dysregulation and instability of Ca2+ signaling common to many types of heart failure. Nevertheless, caution should be excised when extrapolating the cell results to situations in failing hearts, where extensive functional and structural remodeling may undermine Ca2+ stability by mechanisms other than RyR2 phosphorylation.40,41 It is also noteworthy that CaMKII is multifunctional, and its cellular phenotypes would be context dependent. A comprehensive understanding of CaMKII in cardiac Ca2+ physiology and pathophysiology awaits future investigation using diverse cellular and animal models.

Acknowledgments

We thank Bruce Ziman and Dr Harold A. Spurgeon for technical support.

Sources of Funding

This work was supported by the Intramural Research Programs of the NIH, National Institute on Aging (to R.-P.X., H.C., and E.G.L.); Major State Basic Research Development Program and Natural Science Foundation of China (to R.-P.X. and H.C.); and research grants from the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Alberta, Northwest Territories and Nunavut (to S.R.W.C.).

Disclosures

None.

References

21. Xiao B, Sutherland C, Walsh MP, Chen SRW. Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+ release channel (ryanodine receptor) in normal and failing hearts. *Circ Res*. 2003;92:912–919.
22. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. *Circ Res*. 2003;92:904–911.

Ca2+/Calmodulin Kinase II-Dependent Phosphorylation of Ryanodine Receptors Suppresses Ca2+ Sparks and Ca2+ Waves in Cardiac Myocytes

Dongmei Yang, Wei-Zhong Zhu, Bailong Xiao, Didier X.P. Brochet, S.R. Wayne Chen, Edward G. Lakatta, Rui-Ping Xiao and Heping Cheng

Circ Res. 2007;100:399-407; originally published online January 18, 2007; doi: 10.1161/01.RES.0000258022.13090.55

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2007 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circres.ahajournals.org/content/100/3/399

Data Supplement (unedited) at:

http://circres.ahajournals.org/content/suppl/2007/01/18/01.RES.0000258022.13090.55.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/
Materials and Methods

Measurement of L-type Ca$^{2+}$ currents

An Axopatch 200B patch-clamp amplifier (Axon Instruments) was used for the recording of L-type Ca$^{2+}$ currents (I_{Ca}). The pipette (~2.5 MΩ) filling solution contains (in mmol/L) EGTA 4, CsCl 120, Hepes 20, MgCl$_2$ 1.3, MgATP 5, tetraethylammonium chloride 10, CaCl$_2$ 2 (pH=7.2). The extracellular solution contains (in mmol/L) N-methyl-D-glucamine (NMDG) 130, MgCl$_2$ 1.2, CsCl 10, glucose 10, tetrodotoxin 0.01, CaCl$_2$ 1 and Hepes 20 (pH=7.4). I_{Ca} was activated by 200ms-depolarizations from holding potential of -50mV to test potentials ranging from -40 to +60mV. Access resistance was compensated by 70-75%. The magnitude of I_{Ca} was indexed by the difference between the peak inward current and the baseline. The capacitive current in response to a hyper-polarization pulse of 10 mV was used for calculating cell capacitance. Steady state inactivation of I_{Ca} was achieved by a double-pulse protocol. All measurements were performed at room temperature (23-25°C).

Figure Legends

Supplement Fig 1. Characteristics of L-type Ca$^{2+}$ currents (I_{Ca}) in the presence of CA-CaMKII$_{δC}$. A. Typical traces of I_{Ca} at 0mV depolarization from holding potential -50mV, with β-gal as control. B. Voltage-dependence of I_{Ca} density. The cell capacitance was 174.1 ± 9.2 pF for β-gal group and 175.9 ± 8.2 pF for CA-CaMKII$_{δC}$ group. n=8 from 4~5 rats for each data points. C. The 63% decay time (T_{63}) as a function of membrane voltage. ANOVA test showed significant difference between two groups.
(P<0.001). **D.** Steady state inactivation curves of I_{Ca}, fitted by Boltzmann function. The voltages which cause 50% inactivation are 22.9 ± 1.4mV (n=8) for β-gal and 26.3 ± 0.7mV (n=8) for CA-CaMKIIδC (p<0.05).

Supplement Fig 2. Histograms of the Ca^{2+} spark rising time in cells expressing β-gal, wild type and mutant CaMKIIδC. n=250~800 sparks in 35~60 cells from 6 hearts for each group. Insert shows a typical result of Ca^{2+} spark time course and its exponential fitting. Note the prominent mode at around 14-16 ms in the β-gal, WT- or CA-, but not the DN-CaMKIIδC group, with the p value equals to 0.01 via KW_test.

Supplement Fig 3. Properties of Ca^{2+} spark in resting cells expressing β-gal, WT-, CA- or DN-CaMKIIδC. A & B. the average data of spark width (full width at half maximum) and duration (full duration at half maximum), respectively (n=250~800 sparks for each group).

Supplement Fig 4. Properties of Ca^{2+} wave in cells expressing β-gal, WT-, CA- or DN-CaMKIIδC at 20mmol/L extracellular Ca^{2+}. A. Typical line-scan images of Ca^{2+} wave in fluo-4 loaded cells. From top to bottom: raw image of a propagating Ca^{2+} wave, after linear-alignment of the wave front, and the corresponding traces of spatially averaged time courses. B & C. the averaged wave speed and amplitude, respectively (n=30~37 cells from 3~5 hearts for each group).
Supplement figure 2
Supplement figure 4

A

Raw image

After alignment

B

Wave speed (μm/s)

C

Wave amplitude (F/F₀)

Supplement figure 4