Translational Induction of VEGF Internal Ribosome Entry Site Elements During the Early Response to Ischemic Stress

Stéphanie Bornes,* Leonel Prado-Lourengo,* Amandine Bastide, Catherine Zanibellato, Jason S. Iacovoni, Eric Lacazette, Anne-Catherine Prats, Christian Touriol, Hervé Prats

Vascular endothelial growth factor-A (VEGF), a powerful factor involved in vasculogenesis and angiogenesis, is translationally regulated through 2 independent internal ribosome entry sites (IRESs A and B). IRESs enable an mRNA to be translated under conditions in which 5′-cap–dependent translation is inhibited, such as low oxygen stress. In the VEGF mRNA, IRES A influences translation at the canonical AUG codon, whereas the 5′ IRES B element regulates initiation at an upstream, in frame CUG. In this study, we have developed transgenic mice expressing reporter genes under the control of these 2 IRESs. We reveal that although these IRESs display low activity in embryos and adult tissues, they permit efficient translation at early time points in ischemic muscle, a stress under which cap-dependent translation is inhibited. These results demonstrate the in vivo efficacy of the VEGF IRESs in response to a local environmental stress such as hypoxia.

Vascular endothelial growth factor-A (VEGF) is a primary regulator of blood vessel formation and plays diverse roles in the regulation of both physiological and pathological angiogenesis. VEGF expression is highly regulated in vitro and in vivo at both transcriptional and posttranscriptional levels by hypoxia. Furthermore, VEGF and its receptors are upregulated in ischemic limb.

We have previously shown that 2 independent internal ribosome entry sites (IRES A and IRES B) are present in the 5′-untranslated region (UTR) of the human VEGF mRNA and control translation initiation at 2 alternative start codons, AUG 1039 and CUG 499, respectively.4,5 IRES A allows the maintenance of VEGF translation under hypoxic conditions in a cap-independent manner.7 IRES B, upstream of CUG 499, directs cap-independent translational initiation of a longer VEGF isoform (L-VEGF).5

The activities of these IRESs have been investigated in vivo with transgenic mice using a bicistronic reporter vector strategy, previously described in studies with IRESs from fibroblast growth factor 2 (FGF2),8,9 c-myc,10 and encephalomyocarditis virus.8,10

Materials and Methods

Plasmid Constructions

The mouse VEGF 5′-UTR sequence was cloned by PCR from mouse genomic DNA. We replaced the human VEGF sequence in pCRVL by the mouse IRES A or IRES B sequence. PCR products were obtained by amplification of mouse VEGF 5′-UTR sequence with the primers 5′-AAAGGATCCGGCTAGCTCGGGGCTGAG-AAGG3′ and 5′-AACCATGCGTTTCCGGAGGGCCCGTTCCGG-GC-3′ (IRES A) or 5′-AAAGGATCCCAAAGGCAGACTATTTCA-GCCAGA-3′ and 5′-AAACCATGCGGCAAGATCCAAAAGGG-GGAGG-3′ (IRES B). Trimolecular ligation of fragments BamHI-Xhol, XhoI-NcoI of pCRVL with the PCR products digested with BamHI and NcoI leads to the replacement of the human VEGF sequence, creating the plasmids pCRAL (containing IRES A) and pCRBL (containing IRES B) (Figure 1).

Full mouse VEGF 5′-UTR, IRES A, and IRES B sequence was also inserted into the pGL3-basic digested by BglII-NcoI to generate pGL3AB, pGL3A, and pGL3B, respectively.

Constructs containing the human VEGF IRESs, as well as FGF2 and EMCV IRESs, have been previously described.4,5,8,10

Cell Culture

NIH 3T3 (93061524), L929 (85011425), and B82L (85011408) mouse cell lines were obtained from European Collection of Cell Cultures and cultivated according to their instructions. Cell transfections and IRES activity measurements a Dual-Luciferase Reporter Assay System (Promega) were performed as previously described.4

Transgenic Mice

Transgenic C57Bl/6JCA embryos and adult 6-week-old mice were identified by PCR and Southern blot analysis. Two strains for each construct were chosen based on the following criteria: low copy number of the integrated plasmid, as revealed by Southern blot, and similar expression of the transgene at the RNA level, as determined by quantitative RT-PCR using LucR as the target. LucR expression was similar for IRES A or IRES B constructs (<20% difference between the different lines), whereas all strains expressing IRESs A and B exhibited a 2-fold lower expression compared with other constructs. Every experiment was performed with both lines.

Quantitative Real-Time RT-PCR

Total RNA from tibialis muscle, isolated with the SV total RNA Isolation System (Promega), was subjected to quantitative RT-PCR. Additional details are provided in the online data supplement at http://circres.ahajournals.org. Quantification was performed as previously described.9

Hindlimb Tourniquet-Induced Ischemia Experiments

Groups of 6- to 8-week-old male mice were subjected to 3 hours of unilateral tourniquet-induced hindlimb ischemia.11 Repeussion was obtained by removing the tourniquet after 3 hours of ischemia, and then analyses were performed 1 or 24 hours later.

Blood flow was monitored under anesthesia (milligrams of ketamine per kilogram of body weight/milligrams of xylazine per kilogram of body weight, intraperitoneally) using a laser Doppler imager (LiSca, Perimed) or scintigraphy. Luciferase assays and mRNA extractions were performed on muscle lysates.

© 2007 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/01.RES.0000258873.08041.e9
Statistical Analysis
Statistical comparisons were made by analysis of variance (ANOVA; Fisher’s protected least squares difference) and values were considered to be significant when $P < 0.05$.

Results and Discussion
Murine VEGF 5’ UTR Contains Two IRES Elements
Before developing transgenic mice, we wanted to discern whether or not the human IRES elements, A and B, were functionally conserved in the mouse. We cloned and sequenced the mouse 5’ UTR (Figure 1A). Comparison between human and mouse sequences highlighted an important conservation, particularly for the regions surrounding the start codons, the 1 start point of the internal promoter as well as the IRESA and, to a lesser extent, IRES B. By using a promoterless vector experiment, we verified the existence of a cryptic promoter in the 5’ UTR of VEGF gene but no transcriptional activity in the 2 IRES regions (Figure 1B and the online data supplement). Bicistronic reporter vectors containing mouse VEGF IRESs have been constructed as shown in Figure 1C. These constructs were assayed alongside their human counterparts. The mouse and human IRES activities were not significantly different in 3T3 and L929 cell lines; however, the mouse IRESs had lower activities in the B82L cell line (Figure 1D). This discrepancy could be attributable to differential affinities of IRES binding negative or positive transacting factors.

VEGF IRES A and B Activities in Transgenic Mice
Because a difference was pointed out between human and mouse IRES activities, transgenic mice were generated with constructs containing either murine VEGF IRES A, IRES B, or the complete 5’ UTR. To rule out the presence of either cryptic promoters or splice sites in each individual IRES, bicistronic mRNA integrity was verified by using a quantitative real-time PCR strategy on each cistron (Figure 2A). As expected, the lines expressing IRES A or B gave LucR/LucF mRNA ratios of 1. In contrast, mice expressing the full-length 5’ UTR constructs exhibited a ratio of 4.2. This result coupled with the in vitro experiments (Figure 1B and Tet-off experiments in the online data supplement) demonstrated the conservation of the cryptic promoter previously identified between human IRES A and IRES B. Thus we restricted our studies to mice with only IRES A or B. Both of the 2 VEGF IRESs display similar expression levels in embryos and patterns of expression in adult mouse tissues. Interestingly, a peak was found at embryonic day (E12), which corresponds to a period of intense angiogenesis (Figure 2B). In adult
tissues, IRES activities overall displayed a low efficacy. Interestingly, a slight tissue specificity was observed for both IRESs, in contrast to the strong tissue specificity reported for the FGF2 IRES (Figure 2C and 2D).

VEGF IRES A and B Activity Is Highly Induced in Ischemic Muscle

Ischemic skeletal muscle displays a significant stimulation of VEGF expression, which in turn plays a critical role in the angiogenic response. Because IRESs allow protein expression under stress conditions that inhibit cap-dependent translation, we investigated the consequences of ischemic stress on VEGF IRES-dependent translation in vivo. Laser Doppler and scintigraphy experiments were performed to ensure the ischemic state of the whole left limb during the 3 hours of tourniquet-induced ischemia, with the unaffected right limb serving as a control (Figure 3A). To quantitate the ischemic induction of IRES activity, we calculated the ratio of reporter activities between the ischemic limb and the control limb. Three hours after muscle tissue was subjected to severe hindlimb ischemia, we found both IRES A and B were 5 times more active in the ischemic limb versus the control limb (Figure 3B). Furthermore, the FGF2 IRES activity was 4-fold stimulated, whereas the EMCV IRES was only 2-fold activated. Thus the angiogenic growth factors VEGF and FGF2 seem to have evolved IRES elements that not only enable their translation by 5'-cap-independent mechanisms but also allow enhancement of translation under ischemia, a stress condition whose response requires the expression of these factors. Finally, after 24 hours of reperfusion, activities of both VEGF IRESs returned to preischemic values (Figure 3B). We verified the integrity of the bicistronic mRNAs in the limb muscle by real-time PCR and found a marginal fluctuation in the level of message under ischemic conditions between lines A and B (Figure 3C).

Endogenous VEGF mRNA levels in the ischemic muscle never exceeded 150% of that found in the control muscle, as determined by quantitative RT-PCR (Figure 3D). Although mRNA stabilization and/or transcriptional induction presumably play a role in the stress response, the enhancement of IRES-dependent translation represents a rapid and efficient mechanism by which protein synthesis can be induced as a result of the application of an acute stress.

Acknowledgments

We thank J.-C. Couloumiers for technical assistance.
Sources of Funding

This work was supported by grants from La Ligue Nationale Contre le Cancer (“équipe labellisée”) and Action Concertée Incitative Cancéropole.

Disclosures

None.

References

KEY WORDS: VEGF ■ translation ■ internal ribosome entry site ■ transgenic mice ■ ischemia

Figure 3. VEGF IRES activities are upregulated in ischemic muscle. A, Ischemic state and blood flow were assessed by laser Doppler and scintigraphy analysis. B, Fold induction of IRES activities corresponding to the ratio of IRES activities in muscle ischemic/control (I) or reperfused/control (R) (n=6). C, Bicistronic mRNA integrity was determined by mRNA levels for LucF and LucR in ischemic (I) and control (C) muscles (n=4). D, Endogenous VEGF mRNA level determined by quantitative RT-PCR. **P<0.05.
Translational Induction of VEGF Internal Ribosome Entry Site Elements During the Early Response to Ischemic Stress
Stéphanie Bornes, Leonel Prado-Lourengo, Amandine Bastide, Catherine Zanibellato, Jason S. Iacovoni, Eric Lacazette, Anne-Catherine Prats, Christian Touriol and Hervé Prats

Circ Res. 2007;100:305-308; originally published online January 25, 2007;
doi: 10.1161/01.RES.0000258873.08041.c9
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/100/3/305

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2007/01/25/01.RES.0000258873.08041.c9.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the _Permissions and Rights Question and Answer_ document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/
MATERIALS AND METHODS

Quantitative real-time RT-PCR. Total RNA was isolated using the SV total RNA Isolation System (Promega) according to the manufacturer’s recommendations. DNA contamination was removed using an Ambion DNA-free kit. Reverse transcription reactions were performed on 2 µg of total RNA with the Reverse Transcription Core Kit (Eurogentec, Belgium). RT-PCR reactions were treated with RNase H (Invitrogen). Specific primers and probes for Renilla and Firefly luciferase cDNAs (described in the table below) were designed using TaqMan® Primer & Probe Design of Primer Express® v1.5 (Mac) software (Perkin Elmer/Applied Biosystems). 5' 6-FAM and 3' TAMRA modified primers and probes were purchased from Eurogentec. 18S RNA served as an internal control (Pre-developed Taqman® Assay Reagent, 18S rRNA - Applied Biosystem). Quantitative PCR was performed in a total reaction volume of 25 µl in 96-well reaction plates using qPCR™ Mastermix from Eurogentec according to the manufacturer’s recommendations. Final concentrations for Renilla and Firefly Luciferase quantifications were 300 nM for the primers and 100 nM for the probes. The amplification conditions for the Gene Amp 5700 (Applied Biosystems) consisted of an initial step of 2 min at 50°C and HotGoldStar Activation for 10 min at 95°C followed by 40 cycles of 15 sec 95°C, 1 min 60°C.

The delta–delta ct method was used as described by Perkin-Elmer Applied Biosystems to determine the relative levels of mRNA expression between experimental samples and controls.

<table>
<thead>
<tr>
<th>LucR Forward</th>
<th>5'-AAGGTGAAGTTCGTCGTCCAA-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>LucR Reverse</td>
<td>5'-GTACAACGTCAGGTTACCACCTT-3'</td>
</tr>
<tr>
<td>LucR Probe</td>
<td>5'-TTATCATGGCCTCGTAAATCCCGTTAGT-3'</td>
</tr>
<tr>
<td>LucF Forward</td>
<td>5'-TTCCATCTTCCAGGGATACGA-3'</td>
</tr>
<tr>
<td>LucF Reverse</td>
<td>5'-ATCATCCCCCTCGGGTGTA-3'</td>
</tr>
<tr>
<td>LucF Probe</td>
<td>5'-TGGGCTCAGTACATCGCTATTCTGA-3'</td>
</tr>
</tbody>
</table>
Tet-Off Cryptic promoter assay

Plasmid construction

The CMV promoter of pCRAL (containing the murine VEGF IRES-A), pCRBL (containing the murine VEGF IRES-B) and pCRABL were replaced by the TRE-CMV promoter fragment derived from plasmid pUHD 10-3. XhoI and MluI sites were added to 5’ and 3’ extremities, respectively, to the TRE-CMV promoter by PCR. The resulting fragment was inserted into the bicistronic vectors digested by SalI-MluI.

TET regulatable bicistronic constructs containing the 5’ untranslated region of FGF-1 or PDGF were previously described.

The cell line MEF-3T3 Tet-off, used for this experiment (BD Clontech catalog no. C3018-1), is a mouse immortalized fibroblast cell line stably expressing the tetracycline-controlled transactivator (tTA-VP16). Transfection were performed with 1µg of plasmid and JetPEI (Q-BIOgene) in 12-well tissue culture dishes. At 2 h prior to transfection, cells were treated with 0.5 nM, 5 nM or 50 nM doxycycline (Dox). 48 h after transfection, cell lysates were prepared for luminescence activity assays. Luciferase activities were measured as described previously by using the dual luciferase kit from Promega and a Berthold LB96V luminometer.

RESULTS

Tet-Off Cryptic promoter assay

To confirm that bicistronic vectors constructed with either VEGF IRES A or B do not harbor cryptic promoter activity, we have employed the Tet-Off system. Bicistronic vectors are transcriptionally driven by a tetracycline-responsive element (TRE) upstream of the CMV promoter, without an enhancer. In the absence of tetracycline, the chimeric tTA-VP16 protein binds to the TRE element and the minimal CMV promoter is active. In the presence of tetracycline, or tetracycline analogs such as doxycycline, tTA will bind the antibiotic and became unable to bind the TRE, thus preventing...
CMV promoter transactivation. Bicistronic TRE-CMV vectors were constructed with the individual VEGF IRESes and with the full length 5’ UTR in the intercistronic region. As controls, the PDGF 5’ UTR (known to contain a cryptic promoter) and FGF-1A 5’UTR (known to possess an IRES but not a cryptic promoter) were used as previously described².

MEF-3T3 Tet-off cells, which already express tTA-VP16, were transfected with the TET regulatable bicistronic constructs. In such a construct, the LucF/LucR ratio is expected to be stable and independent of the CMV-driven expression level provided that the expression of the second cistron is IRES dependent. In contrast, if there is an intercistronic cryptic promoter, LucF expression will be independent of the CMV promoter and the LucF/LucR ratio will increase proportionally to the repression of the CMV promoter by doxycycline.

Results clearly show that the LucF/LucR ratio increased 15-fold after doxycycline treatment when the PDGF 5’UTR was present between the two cistrons. With the full-length 5’UTR of VEGF, it is also clear that the ratio increases with the inactivation of the CMV/Tet promoter (Figure). This indicates the presence of a cryptic promoter within this sequence. In contrast, the ratios remained unchanged when individual VEGF IRESes were tested, similar to the ratios found
with the FGF 1A IRES. This strongly indicates that no cryptic promoter is present in constructs containing individually either VEGF IRES A or IRES B.

References:
