Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is the cornerstone of cardiac excitation-contraction coupling and Ca2+ signaling1,2. However, as an amplification mechanism exhibiting a high degree of positive feed-back, it has to be kept in check by inhibitory systems to prevent spontaneous oscillatory Ca2+ releases which could possibly trigger cardiac arrhythmias. Local control theory provides us with an initial framework to understand how this could be accomplished.3 Mutually independent Ca2+ signaling events (Ca2+ sparks) generate the necessary amplification locally without spreading to neighboring Ca2+ release sites, whereas the normal signal transduction from L-type Ca2+ channels to the SR occurs within the microdomain of the dyadic cleft, well isolated from the bulk of the cytosol. Uncoupling between neighboring Ca2+ spark sites thus ensures the reliability of the CICR system and occurs by virtue of steep concentration gradients away from the microdomain of Ca2+ release, and by means of the relative insensitivity of the SR Ca2+ release channels (ryanodine receptors [RyRs]) toward cytosolic Ca2+ triggers.4 This uncoupling by local control also underlies the observation that Ca2+ sparks occurring spontaneously remain localized and do not initiate a chain reaction of Ca2+ sparks traveling along the entire myocyte as a Ca2+ wave.

However, this system can also become unstable and CICR is capable of overriding local control and to trigger oscillatory Ca2+ signals in cardiomyocytes, particularly under pathological conditions. Waves of contractions traveling along isolated cardiomyocytes have been discovered and the underlying Ca2+ waves have been imaged with fluorescent Ca2+ indicators quite some time ago.5 In principle, local control could fail to confine accidental Ca2+ release events because of at least two fundamental reasons: 1) the amount of Ca2+ released from the store during a spontaneous Ca2+ spark could increase to such an extent that it would be sufficient to trigger CICR from neighboring Ca2+ spark sites despite the local control mechanisms, thus initiating a Ca2+ wave propagating in a saltatory fashion along the cell; and 2) the sensitivity of the RyRs toward cytosolic Ca2+ triggers could increase to an extent where even the small elevation of cytosolic [Ca2+] reaching out from a spark becomes sufficient to initiate CICR in neighboring sarcomeres 2 \mu m away. Although elevated SR Ca2+ content during Ca2+ overload will lead to more Ca2+ being released during a Ca2+ spark (by law of mass action), there is recent evidence that the situation may be much more complex. It is more and more recognized that the SR Ca2+ concentration can also affect the gating and Ca2+ sensitivity of the RyRs, by making the RyRs less Ca2+ sensitive on store emptying,7 and more sensitive during refilling.8 This backward signal may be communicated from the SR lumen to the RyRs after Ca2+ binding to calsequestrin (CSQ) and by means of allosteric interactions also involving the two small SR proteins junctin and triadin. Thus, any elevation of the SR Ca2+ concentration would inevitably affect both features of the local control system, the diffusional dissipation of the released Ca2+ and the Ca2+ sensitivity of the RyRs. Furthermore, most conditions leading to arrhythmias because of spontaneous SR Ca2+ release are also associated with Ca2+ overload (eg, intoxication with cardiac glycosides, ischemia/reperfusion injury). Therefore, it is difficult to separate the two mechanisms contributing to local control and to examine the two possibilities independently of each other in experiments.

However, there are a few notable exceptions, such as the recently discovered mutations in the RyR9 (and CSQ10) proteins, where gating changes could indeed occur separate from and independent of SR Ca2+ overload. To understand the pathophysiological consequences of these mutations it is very important to ascertain that the changes of the RyR gating induced by the mutations are per se sufficient to trigger arrhythmias, or whether SR Ca2+ overload is required as well. Interestingly, these patients typically develop arrhythmias (catecholaminergic polymorphic ventricular tachycardia [CPVT]) during physical exercise or stress, which may increase RyR open probability further via SR Ca2+ loading or RyR phosphorylation.9 Thus, from the clinical and experimental manifestations of these channelopathies and CSQ protein mutations described above we cannot conclude whether alterations of RyR gating alone are sufficient to trigger spontaneous Ca2+ waves causing arrhythmias.

In the current issue of Circulation Research, Venetucci et al11 present remarkable results obtained from experiments precisely addressing this crucial question. Can isolated changes of RyR gating, for example in the presence of RyR mutations or hyperphosphorylation, initiate and sustain oscillatory and arrhythmogenic SR Ca2+ releases or is SR Ca2+ overload required as well? As an experimental approach, they used isolated rat ventricular cells and applied a low concentration of caffeine, which is known to sensitize the RyRs for cytosolic Ca2+.

Their findings clearly indicate that sensitization of RyR by a low concentration of caffeine is not
sufficient to elicit Ca\(^{2+}\) waves over a longer period of time. This appears to be, at least in part, because of a downstream consequence of the additional RyR activation by caffeine. This additional RyR activation constitutes an enhanced SR Ca\(^{2+}\) leak which subsequently leads to a reduction of SR Ca\(^{2+}\) load. The reduced SR Ca\(^{2+}\) load may in turn result in less Ca\(^{2+}\) being released during each spontaneous spark, and may also desensitize the RyRs. Thus, the secondary changes in SR Ca\(^{2+}\) content restabilize the system and lead to a new stable state. However, when SR Ca\(^{2+}\) content was elevated by application of isoproterenol (ISO), to stimulate the SR Ca\(^{2+}\) pump (SERCA2a) by phosphorylation of phospholamban, the myocytes continued to generate Ca\(^{2+}\) waves as a consequence of the sustained enhanced RyR Ca\(^{2+}\) sensitivity.

Taken together, it appears that one aspect of the local-control mechanism is quite clear: isolated changes of RyR sensitivity to Ca\(^{2+}\) (as mediated by caffeine) are not sufficient to sustain prolonged spontaneous CICR activity. Additional elements that depend on SR Ca\(^{2+}\) load (and possibly β-adrenergic stimulation) are required. However, the implications of changed SR Ca\(^{2+}\) load are not as clear, in part because elevated luminal SR Ca\(^{2+}\) will not only increase CICR by law of mass action, but is also thought to further sensitize the RyRs by the allosteric interactions mentioned above.

Based on these observations one can also see the well-established finding of a reduced SR content under conditions of congestive heart failure from a different perspective. Reduced SR content is generally assumed to cause impaired cardiac function and to occur because of reduced SERCA2a expression, possibly further accentuated by an enhanced SR Ca\(^{2+}\) leak via hyperphosphorylated RyRs. In the light of the present findings, the low SR Ca\(^{2+}\) content might actually reflect a beneficial and adaptive change of Ca\(^{2+}\) signaling, to reduce the risk for arrhythmias caused by sensitized RyRs. Thus, the therapeutic strategy to increase the SR Ca\(^{2+}\) load in these patients with pharmacological tools or gene therapy approaches to stimulate the SERCA2a may bear a certain risk, particularly when the SR Ca\(^{2+}\) load increases too much. Specifically targeting the RyRs to reduce the SR Ca\(^{2+}\) leak may represent a promising alternative which is unlikely to cause Ca\(^{2+}\) overload by itself.

Sources of Funding

Funding was received from Swiss National Science Foundation (SNF 109693.05), Swiss Foundation for Research on Muscle Diseases (SSEM), the Swiss Cardiovascular Research and Training Network (SCRTN), the Swiss State Secretariat for Education and Research (SER) and the European Commission (RTN2–2001-00337).

Disclosures

None.

References

Key Words: Ca\(^{2+}\) transients ■ calcium signaling ■ ryanodine receptor ■ sarcoplasmic reticulum
The Cardiac Sarcoplasmic Reticulum: Filled With Ca2+ and Surprises
Ernst Niggli

Circ Res. 2007;100:5-6
doi: 10.1161/01.RES.0000255896.06757.97
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/100/1/5

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/