Calmodulin Kinase II Inhibition Shortens Action Potential Duration by Upregulation of K⁺ Currents

Jingdong Li, Céline Marionneau, Rong Zhang, Vaibhavi Shah, Johannes W. Hell, Jeanne M. Nerbonne, Mark E. Anderson

Abstract—The multifunctional Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) is activated by elevated intracellular Ca²⁺ (Ca²⁺ᵢ), and mice with chronic myocardial CaMKII inhibition (Inh) resulting from transgenic expression of a CaMKII inhibitory peptide (AC3-I) unexpectedly showed action potential duration (APD) shortening. Inh mice exhibit increased L-type Ca²⁺ current (IₖCa), because of upregulation of protein kinase A (PKA) activity, and decreased CaMKII-dependent phosphorylation of phospholamban (PLN). We hypothesized that CaMKII is a molecular signal linking Ca²⁺ᵢ to repolarization. Whole cell voltage-clamp recordings revealed that the fast transient outward current (I₉₋₂₀) and the inward rectifier current (Iₘᵢₑ₉) were selectively upregulated in Inh, compared with wild-type (WT) and transgenic control, mice. Breeding Inh mice with mice lacking PLN returned I₉₋₂₀ and Iₘᵢₑ₉ to control and WT levels and equalized the APD and QT intervals in Inh mice to control and WT levels. Dialysis of AC3-I into WT cells did not result in increased I₉₋₂₀ or Iₘᵢₑ₉, suggesting that enhanced cardiac repolarization in Inh mice is an adaptive response to chronic CaMKII inhibition rather than an acute effect of reduced CaMKII activity. Increasing PKA activity, by cell dialysis with cAMP, or inhibition of PKA did not affect I₉₋₂₀ in WT cells. Dialysis of WT cells with cAMP also reduced I₉₋₂₀, suggesting that PKA upregulation does not increase repolarizing K⁺ currents in Inh mice. These findings provide novel in vivo and cellular evidence that CaMKII links Ca²⁺ᵢ, to cardiac repolarization and suggest that PLN may be a critical CaMKII target for feedback regulation of APD in ventricular myocytes. (Circ Res. 2006;99:1092-1099.)

Key Words: Ca²⁺ᵢ/calmodulin-dependent protein kinase II □ calcium signaling □ repolarization

Cardiac contraction depends on a tightly orchestrated interplay between action potential duration (APD) and intracellular Ca²⁺ (Ca²⁺ᵢ). Increases in APD cause increases in Ca²⁺ᵢ, leading to strengthened contraction. Changes in Ca²⁺ᵢ, however, are also a source of feedback control for ionic currents that ultimately determine APD. The mechanisms for feedback regulation of APD by Ca²⁺ᵢ, remain to be elucidated, but we hypothesized that Ca²⁺ᵢ-activated signaling molecules may be important for regulating APD.

The multifunctional Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase that is abundant in heart and targets key Ca²⁺ᵢ homeostatic proteins. We studied mice with chronic cardiomyocyte-delimited CaMKII inhibition (Inh) by transgenic expression of a specific CaMKII inhibitory peptide (AC3-I). In addition to wild-type littermates (WT), we also used transgenic control mice (Con) with myocardial expression of an inactive, scrambled version of AC3-I (AC3-C). Inh mice have shortened optically recorded APDs, despite an increased inward L-type Ca²⁺ current (IₖCa) that results from increased activity of protein kinase A (PKA). Because increased inward IₖCa, unopposed by upregulation of other repolarizing currents, would cause APD lengthening rather than APD shortening, we hypothesized that CaMKII inhibition also increases repolarizing K⁺ currents. Most Ca²⁺ᵢ, for each heart beat is released from intracellular sarcoplasmic reticulum (SR) Ca²⁺ stores. Overexpression of a SR Ca²⁺ ATPase (SERCA) results in reductions in repolarizing K⁺ currents and APD lengthening. On the other hand, Inh mice have reduced SR Ca²⁺ content and APD abbreviation compared with Con or WT mice. These 2 findings suggested the hypothesis that SR Ca²⁺ uptake is important for feedback regulation of APD. To test the potential role of CaMKII in this mechanism, we bred Inh (and Con) mice with mice null for phospholamban (PLN⁻⁻⁻⁻), a negative regulatory protein for SERCA and a phosphorylation target for CaMKII.

Recordings from ventricular myocytes isolated from Inh mice revealed significant upregulation of 2 repolarizing K⁺...
currents: the fast component of the transient outward current (\(I_{\text{to}}\)) and the inward rectifier current (\(I_{\text{ki}}\)), whereas other \(K^+\) currents were unchanged compared with Con or WT cells. Increased \(I_{\text{to}}\) and \(I_{\text{ki}}\) appear to represent an adaptive response to chronic myocardial CaMKII inhibition and not an acute consequence of CaMKII inhibition, because neither \(I_{\text{to}}\) nor \(I_{\text{ki}}\) was increased in WT cells dialyzed with AC3-I. Furthermore, increased \(I_{\text{to}}\) and \(I_{\text{ki}}\) were not reversed by cell dialysis with a PKA inhibitory peptide in Inh cardiomyocytes, suggesting increased PKA activity is not involved in the feedback regulation of APD during CaMKII inhibition. In addition, quantitative real-time PCR (qRT PCR) and quantitative immunoblotting did not reveal correlative changes in the expression levels of several \(K^+\) channel subunit genes/proteins, including subunits previously shown to contribute to \(I_{\text{to}}\) and \(I_{\text{ki}}\), in the ventricles of Inh mice. PLN ablation eliminated the differences in QT interval, APD, \(I_{\text{to}}\) and \(I_{\text{ki}}\) in Inh, Con and WT mice ex vivo and in vivo. These findings reveal that CaMKII is an important signal element for a previously unrecognized SR-dependent mechanism for feedback control of cardiac repolarization.

Materials and Methods

An expanded Materials and Methods section is available in the online data supplement at http://circres.ahajournals.org.

Mice With Myocardial CaMKII Inhibition

The AC3-I (Inh) and AC3-C (Con) mice were generated by synthesis of a minigene based on the peptide sequence of AC3-1 (KKALKHRQEAVDVCL) or AC3-C (KKALKHÆQERDVCL). This approach avoids the complications inherent in previous studies using CaMKII inhibitory drugs that are known to also act as CaMKII-independent \(K^+\) current antagonists. For some experiments, PLN-null mice (PLN \(-/-\)) were bred with AC3-I and AC3-C mice for \(>4\) generations.

Cardiac Electrophysiology

ECGs were recorded in vivo or ex vivo from Langendorff-perfused hearts. Total outward \(K^+\) currents, \(I_{\text{ki}}\), and \(I_{\text{to}}\) were recorded from isolated ventricular myocytes using previously described methods. Reagents for manipulating CaMKII and PKA activity were included in the pipette solution for some experiments: cAMP (1 mmol/L); CaMKII protein kinase A inhibitory peptide (PKI) (50 \(\mu\)mol/L); CaMKII inhibitory peptide AC3-I and the inactive AC3-C congenger peptide AC3-C (both at 30 \(\mu\)mol/L).

\(K^+\) Channel Subunit Protein Expression and mRNA Measurements

Western blots and qRT PCR were performed on fractionated lysates prepared from the ventricles of 11- to 13-week-old male and female WT, Con, and Inh mice. Identical analyses were performed on hearts from PLN \(-/-\) and PLN \(-/\) mice interbred with Con or Inh mice.

Analysis of Ca_{1,2} Phosphorylation

Immunosignals for Ca_{1,2} were detected by chemiluminescence and quantified by densitometry as described.

Data Analysis

Data analysis was performed using SigmaStat. Values are means \(\pm\) SEM. Statistical significance was determined using ANOVA or Student’s \(t\) test, as appropriate. Post hoc comparisons were assessed using Bonferroni’s correction for parametric data and Dunn’s test on ranks for nonparametric data. The null hypothesis was rejected for \(P<0.05\).

Results

Abbreviated Ventricular Repolarization in Hearts With Genetic CaMKII Inhibition

The QT interval reflects the duration of ventricular repolarization. Inh mice had significantly shorter QT intervals compared with WT and Con mice in vivo and ex vivo (Figure 1). Spontaneous heart rates in isolated, Langendorff-perfused hearts were not different among Inh, WT, or Con hearts (supplemental Figure I), whereas PR intervals were prolonged in Inh hearts (supplemental Figure I), as occurs in vivo. The APDs at 90%, 75%, and 50% recovery to baseline from ventricular paced (RR=150 ms) WT (n=7), Inh (n=7), and Con (n=8) hearts. The vertical bars are arranged by group as in b and c. f, Representative surface ECG tracings. Summary data for QT\(_{90}\) (g) and QT\(_{SC}\) (h) for WT (n=16), Inh (n=15), and Con (n=18) mice from surface ECGs. \(P<0.001\) and **\(P<0.01\) compared with WT and Con hearts.

Downloaded from http://circres.ahajournals.org/ by guest on April 29, 2016
hearts (supplemental Figure II). Taken together, these data to determine the expression levels of atrial natriuretic factor (ANF) and suggest that upregulation of I_K1 and I_{Kst} in Inh mice do not represent coordinate components of a hypertrophic signaling program.

Acute CaMKII Inhibition Does Not Increase I_{K1} or I_{Kst}

CaMKII activity is chronically suppressed in adult Inh mice because expression of the CaMKII antagonist peptide is driven by the α-MHC promoter that becomes active near the time of birth. However, the previous experiments do not provide insight into whether these changes are a direct result of CaMKII inhibition or, alternatively, reflect an indirect adaptive response to chronic CaMKII inhibition. We dialyzed ventricular myocytes isolated from WT mice with the Inh (AC3-I) peptide under conditions previously shown to prevent CaMKII actions on L-type Ca$^{2+}$ current.17 Acute (10-minute) exposure of ventricular myocytes to AC3-I failed to increase I_K1 or I_{Kst} compared with WT cells without AC3-I or compared with WT cells dialyzed with the inactive control peptide AC3-C (supplemental Figure III). These findings do not support a connection between acute CaMKII inhibition and increased I_K1 or I_{Kst} and, therefore, suggest that shortened repolarization observed in Inh mice is not directly related to reduced CaMKII-dependent phosphorylation of ion channel proteins.

Increased PKA Activity Directly Affects Ca$_{1.2}$

Upregulation of ventricular I_{K1} in Inh mice is attributable to enhancement of PKA activity, without a change in expression of the pore-forming α$_1$Ca$_{1.2}$ subunit.18 We used a phospho- and site-specific antibody to measure directly the phosphorylation state of α$_1$ at Ser1928, a validated site for PKA phosphorylation. Western blot analyses revealed that phosphorylation of Ca$_{1.2}$ at Ser1928 is significantly increased in Inh compared with Con and WT ventricular myocytes (P 0.001). There were no significant differences among Inh, Con, and WT mice for slow (lslow) or steady-state (lss) currents (P 0.001). Vm indicates membrane potential.

Acute CaMKII Inhibition Does Not Increase I_{K1} or I_{Kst}
long form, we also evaluated the expression levels of the 2 isoforms separately. These experiments revealed no measurable differences in the expression level of either of the 2 Cav1.2 isoforms in Inh, compared with WT or Con, ventricles (Figure 4).

Increased PKA Activity Is Not a General Mechanism for Increasing I_{K1} and $I_{to,f}$

We next asked if enhanced PKA activity was a general compensatory response to chronic CaMKII inhibition and a mechanism for increasing I_{K1} and $I_{to,f}$, similar to the PKA-dependent mechanism for I_{Ca} upregulation seen in Inh hearts.4 We dialyzed WT, Inh, and Con cells with the PKA activator cAMP or the PKA inhibitory peptide PKI for 10 minutes. We previously found that cAMP increased peak I_{Ca} in WT and Con myocytes to Inh levels, whereas PKI reduced I_{Ca} in Inh cells to WT and Con levels.4 In contrast, the increased I_{K1} in Inh, compared with Con and WT, ventricular myocytes was not consistently affected by dialysis with cAMP or PKI (Figure 5a and 5b), although PKI dialysis for 10 minutes increased peak I_{K1} recorded at -60 mV more in Inh than in WT or Con cells (Figure 5a). The larger inward component of I_{K1}, recorded at -100 mV, remained greater in Inh compared with WT or Con cells after cAMP ($P=0.03$) or PKI ($P=0.05$). These findings are not consistent with the concept that upregulation of PKA activity in Inh cardiomyocytes accounts for increases in I_{K1} in Inh cardiomyocytes.

Peak $I_{to,f}$ was reduced significantly ($P=0.001$) by cAMP in Inh, Con, and WT cells compared with cells dialyzed with PKI (Figure 5c). The pattern of relative increase in peak $I_{to,f}$ recorded from Inh compared with WT and Con cardiomyocytes was maintained, but the differences among WT, Inh, and Con cells were no longer significantly different after 10 minutes of cAMP ($P=0.129$) or PKI ($P=0.199$). These findings suggest that $I_{to,f}$ is responsive to PKA signaling but are most consistent with a model where PKA signaling reduces, rather than increases, peak $I_{to,f}$. Taken together, these findings showed that upregulation of I_{K1} and $I_{to,f}$ is not likely caused by increased PKA activity and suggest that PKA upregulation is not a general mechanism for cellular adaptation to chronic CaMKII inhibition.

Phospholamban Is Required for Enhanced Repolarization by CaMKII Inhibition

Inh mice have significantly reduced CaMKII-dependent PLN phosphorylation compared with Con and WT counterparts,4 and recent findings have shown that overexpression of SERCA1a markedly reduces the expression of repolarizing K^+ currents in heart.2 To test whether shortened repolarization observed in Inh mice was linked to the SR Ca$^{2+}$...
regulation, we interbred the Inh and Con mice with mice lacking PLN (PLN^{−/−}). PLN is a negative regulator of SR Ca²⁺ uptake that is phosphorylated by CaMKII. The reduction in SR Ca²⁺ content seen in Inh ventricular myocytes⁴ is prevented by PLN ablation, and ventricular myocytes from PLN^{−/−} mice and PLN^{−/−} mice expressing the CaMKII inhibitory peptide AC3-I (Inh^{PLN−/−}) and expressing the inactive control peptide AC3-C (Con^{PLN−/−}) have equivalent SR Ca²⁺ content.⁸ Thus, if reduced SR Ca²⁺ content were part of the mechanism for enhanced repolarization in Inh mice, then repolarization should be equivalent in Inh and Con mice after breeding into a PLN^{−/−} background, unless the interbred mice exhibited cardiac hypertrophy. The interbred mice did not show histological or morphometric evidence of hypertrophy.¹¹ In addition, ANF and β-MHC mRNA were not increased in Inh^{PLN−/−} compared with WT and Con^{PLN−/−} hearts (supplemental Figure IV).

CaMKII inhibition–dependent effects on repolarization were prevented by ablation of PLN. Inh^{PLN−/−} and Con^{PLN−/−} mice had similar repolarization durations, ex vivo (Figure 6a through 6c) and in vivo (Figure 6d and 6e). In the absence of PLN, chronic CaMKII inhibition did not result in increased <i>I_{K1}</i> (Figure 6f and 6g) or <i>I_{Na,K}</i> (Figure 6h) compared with PLN^{−/−} or Con^{PLN−/−} myocytes or compared with WT and Con myocytes (see Figures 2 and 3). PLN ablation, therefore, interrupts the effects of CaMKII inhibition on repolarization, consistent with the concept that the SR is a critical target for the observed remodeling of action potential repolarization by chronic myocardial CaMKII inhibition.

Remodeling of K⁺ Channel Subunit mRNA and Protein Expression Levels With CaMKII Inhibition and Deletion of PLN

CaMKII activity can regulate transcriptional activity and so a possible mechanism for increased <i>I_{K1}</i> and <i>I_{Na,K}</i> in Inh mice is upregulation of mRNAs encoding K⁺ channel proteins. We performed qRT PCR using primer pairs specific for several K⁺ channel pore-forming subunit genes expressed in adult mouse ventricles (supplemental Table), including KCND2 and KCND3, which encode K_{4.2} and K_{4.3}, respectively, and contribute to <i>I_{K,I}</i>; and KCNJ2 and KCNJ12, which encode Kir2.1 and Kir2.2, respectively, and contribute to <i>I_{K1}</i>.⁹ These experiments revealed that the expression levels of KCND2, KCND3, KCNJ2, and KCNJ12, as well as of other K⁺ channel pore-forming subunit genes, including KCNA5 (K_{1.5}) and KCNB1 (K_{2.1}), are similar in Inh, Con, and WT ventricles (Figure 7a). Unexpectedly, these experiments also revealed markedly reduced expression of KCNP2 (which encodes the K⁺ channel accessory subunit KChIP2²⁰) in Inh, compared with WT and Con, ventricles (Figure 7a). Expression levels of another accessory subunit gene, KCNAB1 (which encodes K_{β1} subunits) were similar in Inh, Con, and WT ventricles. Similar results were obtained in the PLN^{−/−} background (Figure 7b). These findings suggest that the increased <i>I_{K1}</i> and <i>I_{Na,K}</i> in Inh mice are not attributable to transcriptional upregulation of the genes encoding <i>I_{K1}</i> and <i>I_{Na,K}</i> channels.

The K_{4.2}, K_{4.3}, and KChIP2 proteins coalesce to produce <i>I_{Na,K}</i> whereas Kir2.1 is the critical pore-forming subunit for the generation of <i>I_{K1}</i>.⁹ and increases in these subunits could potentially explain the observed increases in <i>I_{Na,K}</i> and <i>I_{K1}</i> in Inh myocytes. Western blot analyses, however, revealed that the expression levels of K_{4.2}, K_{4.3}, and Kir2.1, as well as of other K⁺ channel subunits present in adult mouse ventricles, including K_{1.5}, K_{2.1}, Kir2.2, and K_{β1}, were similar in Inh, Con, and WT ventricles (Figure 8a through 8e). PLN ablation did not measurably affect the relative expression levels of these channel subunit proteins (Figure 8f). These experiments also revealed small, but statistically significant (P<0.05) differences in KChIP2 protein expression in Con, compared with WT and Inh, ventricles (Figure 8g and 8e), as well as in the ventricles of Inh mice.
CaMKII activity is already known to be increased by the elevation in Ca²⁺ i caused by APD prolongation,21 Our findings point to a potential connection between SR Ca²⁺ cycling and CaMKII for sculpting action potential repolarization, because PLN ablation eliminated the effects of CaMKII inhibition on APD, Iₐ,t, and Iₚ,i. CaMKII activity is already known to be increased by the elevation in Ca²⁺ i, caused by APD prolongation,10 and the present findings suggest that CaMKII can also have a role as a regulatory feedback signal for connecting changes in Ca²⁺ i, to cardiac repolarization.

Model of Chronic In Vivo CaMKII Inhibition
One surprising finding was that upregulation of Iₐ,t and Iₚ,i did not appear to be caused by the acute effects of CaMKII-dependent phosphorylation, because neither current was increased by cellular dialysis with AC3-I. The finding that increases in Iₐ,t and Iₚ,i were not recapitulated by AC3-I dialysis suggested that cellular responses to chronic CaMKII inhibition are different from those to acute suppression of CaMKII activity. CaMKII inhibition by chronic inhibitory dialysis suggested that cellular responses to chronic CaMKII inhibition,10 and the present findings suggest that CaMKII can also have a role as a regulatory feedback signal for connecting changes in Ca²⁺ i, to cardiac repolarization.

Discussion
CaMKII Regulates Myocardial Repolarization
This study identifies Iₐ,t and Iₚ,i as determinants for APD shortening in Inh mice with CaMKII inhibition. CaMKII is activated by Ca²⁺ i, and regulates key Ca²⁺ i, homeostatic processes including SR Ca²⁺ cycling.21 Our findings point to a potential connection between SR Ca²⁺ handling and CaMKII for sculpting action potential repolarization, because PLN ablation eliminated the effects of CaMKII inhibition on APD, Iₐ,t, and Iₚ,i. CaMKII activity is already known to be increased by the elevation in Ca²⁺ i, caused by APD prolongation,10 and the present findings suggest that CaMKII can also have a role as a regulatory feedback signal for connecting changes in Ca²⁺ i, to cardiac repolarization.

Model of Chronic In Vivo CaMKII Inhibition
One surprising finding was that upregulation of Iₐ,t and Iₚ,i did not appear to be caused by the acute effects of CaMKII-independent phosphorylation, because neither current was increased by cellular dialysis with AC3-I. The finding that increases in Iₐ,t and Iₚ,i were not recapitulated by AC3-I dialysis suggested that cellular responses to chronic CaMKII inhibition are different from those to acute suppression of CaMKII activity. CaMKII inhibition by chronic inhibitory drug therapy or by cardiomyocyte-delimited AC3-I expression confers resistance to myocardial infarction, catecholamine toxicity, apoptosis,11 and myocardial dysfunction and arrhythmias in calcineurin cardiomyopathy;22 therefore, insight into the mechanisms of cellular compensation to chronic CaMKII inhibition could be important for developing future therapies.

CaMKII can directly increase Iₚ,i by increasing the opening probability of L-type Ca²⁺ channels;7 therefore, we initially anticipated that Iₚ,i would be less in Inh than in Con or WT mice. However, Inh mice have Iₚ,i upregulation by increased PKA activity.4 Here we show direct evidence for enhanced phosphorylation of Cav1.2 at Ser1928, but our experiments using cellular dialysis with cAMP and PKA failed to yield evidence that PKA activity contributes to increased Iₚ,i or Iₚ,i in Inh mice. PKA is typically associated with reduction in Iₚ,i,23 and cAMP reduced and PKI increased Iₚ,i, consistent

![Figure 8f](http://circres.ahajournals.org/)

![Figure 8](http://circres.ahajournals.org/)
with these reports. Our findings do not suggest that increased PKA activity is regulating $I_{Ca,T}$ in Inh mice, because $I_{Ca,T}$ is greater in Inh than in Con or WT animals. On the other hand, I_{K_a} has been reported to increase24 and decrease25 in response to PKA stimulation. Cell dialysis with cAMP or PKI failed to increase I_{K_1} in Inh, Con, or WT cells, suggesting that PKA was not a critical determinant of I_{K_1} under our experimental conditions. Overall, our findings do not support a model in which increased PKA activity is important in the upregulation of $I_{Ca,T}$ or I_{K_1} in Inh mice.

SR Ca$^{2+}$ Feedback Regulation of Repolarizing K$^+$ Currents

It is now established that prolongation of repolarization can elevate Ca$^{2+}$,2,26 that contributes to increased cellular contraction1 and arrhythmias.27 In some studies, increased APD results in hypotrophy,28 but hypotrophy is not present in other mouse models with action potential prolongation.29 Recent evidence also supports the concept that “retrograde” signaling from SR Ca$^{2+}$ to ionic currents is important for regulating K$^+$ channel synthesis and regulating APD.3 Our results clearly reveal that targeting CaMKII activity selectively affects the functional expression of repolarizing cardiac K$^+$ currents by a mechanism that requires PLN, without measurably affecting the expression levels of several subunit proteins that contribute to the formation of these channels.

Transgenic mice with enhanced myocardial SR Ca$^{2+}$ uptake caused by overexpression of a skeletal muscle isoform of SERCA (SERCA1a) show APD prolongation and reduced expression of proteins underlying $I_{Ca,T}$ (KChIP2, K4.2, K4.3) and $I_{K,slow}$ (K2.1 and K1.5).4 Inh mice were previously shown to have reduced SR Ca$^{2+}$ content, equivalent spark frequency, and markedly diminished PLN phosphorylation at Thr17 compared with Con mice.4,6 The increases in $I_{Ca,T}$ and I_{K_1} in Inh mice are reversed to baseline by PLN ablation, a maneuver that eliminates CaMKII inhibition mediated reduction in SR Ca$^{2+}$ content,6 suggesting that PLN and SR Ca$^{2+}$ are key components connecting CaMKII-dependent alterations in K$^+$ currents to the physiology of myocardial repolarization. Taken together, these findings in Inh and SERCA1a-overexpressing mice provide point to an important relationship between SR Ca$^{2+}$ uptake and action potential repolarization.

The mechanisms underlying the alterations in K$^+$ current densities in the Inh and SERCA1a overexpressing models are different. SERCA1a overexpressing mice have increased SR Ca$^{2+}$ content and QT interval prolongation,2 whereas Inh mice have reduced SR Ca$^{2+}$ and show QT and APD shortening caused by increases in $I_{Ca,T}$ and I_{K_1}. SERCA1a-overexpressing mice show reduced $I_{Ca,T}$ and reduced slow ($I_{K,slow}$) and steady-state (I_{K_1}) currents, whereas I_{K_1} was not reported.2 The different $I_{K,slow}$ responses in Inh and SERCA1a-overexpressing mice may indicate that individual repolarizing currents couple to distinct components of SR Ca$^{2+}$ uptake regulation (eg, SERCA versus PLN). Although the feedback mechanisms linking SR Ca$^{2+}$ content and cardiac repolarization remain incompletely understood in SERCA1a-overexpressing and Inh mice, neither model exhibited signs of cardiac hypertrophy. Thus, the feedback relationship between SR Ca$^{2+}$ and cardiac repolarization seems to be operative even in the absence of underlying cardiac disease. There are similarities but also substantial differences in the molecular mechanisms for repolarization between mice and larger mammals, including humans.30 An important future direction will be to determine whether feedback mechanisms among CaMKII, SR Ca$^{2+}$ reuptake, and myocardial repolarization are similar in mice and in larger mammals.

CaMKII Is a Dual Signal for Cardiac Hypertrophy and Electrical Remodeling

APD prolongation is a stereotyped “electrical remodeling” response to structural heart disease from diverse causes that may contribute to arrhythmias in animal models and in patients with cardiac hypertrophy and heart failure.15 The APD shortening in Inh mice suggests the possibility of a “reverse electrical remodeling” response to chronic CaMKII inhibition. Acute CaMKII inhibition can reduce arrhythmias in the setting of electrical remodeling and cardiac hypertrophy, but without changing APD.31 On the other hand, chronic CaMKII inhibition can improve myocardial function, reduce mortality, and suppress ventricular arrhythmias in mice with calcineurin cardiomyopathy,22 suggesting that distinct mechanisms control arrhythmic properties of acute and chronic CaMKII inhibition. Myocardial responses to chronic CaMKII inhibition are complex but are apparently adaptive and the present findings establish that they include a reordering of repolarization that causes APD shortening by a mechanism that requires PLN.

Acknowledgments

The PLN$^{-/-}$ mice were a generous gift from Dr E. G. Kranias.

Sources of Funding

We acknowledge financial support from the NIH (grants HL070250, HL062494, and HL046681 to M.E.A.; HL034161 and HL066388 to J.M.N.; and NS035563 to J.W.H.) and the American Heart Association. M.E.A. is an Established Investigator of the American Heart Association, and C.M. is the recipient of a Postdoctoral Fellowship from the American Heart Association, Heartland Affiliate.

Disclosures

None.

References

Downloaded from http://circres.ahajournals.org/ by guest on April 29, 2016

13. Davare MA, Hell JW. Increased phosphorylation of the neuronal L-type Ca(2+) channel Ca(V)1.2 during aging. Proc Natl Acad Sci U S A. 2003;100:16018–16023.

Calmodulin Kinase II Inhibition Shortens Action Potential Duration by Upregulation of K⁺ Currents

Jingdong Li, Céline Marionneau, Rong Zhang, Vaibhavi Shah, Johannes W. Hell, Jeanne M. Nerbonne and Mark E. Anderson

Circ Res. 2006;99:1092-1099; originally published online October 12, 2006;
doi: 10.1161/01.RES.0000249369.71709.5c
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2006 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/99/10/1092

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2006/10/12/01.RES.0000249369.71709.5c.DC1.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Online Data Supplement

Li et al

Inh and Con mice
Ventricular myocytes were isolated from adult male and female mice (80 – 100 days old) by a previously described technique.\(^1\) CaMKII activity is reduced by \(\sim 40\%\) in Inh, compared to Con or WT, cardiac homogenates, but the degree of CaMKII inhibition \textit{in situ} is likely greater based on the near ablation of CaMKII-dependent phosphorylation of PLN at Thr 17 in Inh ventricular myocytes.\(^2\) The genetic identity of PLN\(^{-/-}\) pups with transgenic expression of AC3-I or AC3-C was confirmed using PCR.\(^3,\(^4\)\)

The investigation conforms to the \textit{Guide for the Care and Use of Laboratory Animals} published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Electrophysiology
Mice were anesthetized with Avertin (20 \(\mu\)l/g, i.p.) from a stock solution [10 g of tribromoethanol alcohol (Aldrich) + 10 ml of tert-amyl alcohol (Aldrich), stored at 4\(^{\circ}\)C]. The QT interval at 90 percent recovery to baseline (QT\(_{90}\)) was corrected for heart rate (QT\(_{90,C}\)) by the formula QT\(_{90,C} = QT_{90}/(RR/100)^{1/2}\).\(^5\) Ionic currents from ventricular myocytes were recorded using the whole-cell configuration of the patch–clamp technique.\(^6\) Tip resistance was 1–2 \(\Omega\)M when pipettes were filled with intracellular solution, and series resistance compensation was routinely set at \(>85\%\) in all experiments. All recordings were obtained at room temperature (22–26\(^{\circ}\)C).

Outward K\(^{+}\) currents were dissected using the following expression: \(I(t) = I_{to,f} \exp(-t/\tau_f) + I_{K,slow1} \exp(-t/\tau_{slow1}) + I_{ss}\), where \(t\) is the time, \(\tau_f\) and \(\tau_{slow1}\) are time constants, \(I_{to,f}\) and \(I_{K,slow1}\) are corresponding amplitudes and \(I_{ss}\) (also called \(I_c\))\(^7\) is the amplitude of the steady-state component. The extracellular (bath) solution consisted of (mM): 137 NaCl, 5.4 KCl, 0.3 CaCl\(_2\), 0.5 MgCl\(_2\), 0.16 NaH\(_2\)PO\(_4\), 3 NaHCO\(_3\), 5 HEPES, 5 glucose and 2\%BSA. The pH was adjusted to 7.35 (room temperature) with NaOH. The intracellular (pipette) solution consisted of (mM): 140 KCl, 10 K-EGTA, 10 K-HEPES, 5 K\(_2\)ATP, and 1 MgCl\(_2\), with pH adjusted to 7.35 with KOH.

\(K^{+}\) channel immunoblotting
Some experiments were completed on fractionated ventricular membrane proteins\(^8\) isolated from 11-13 week male WT (n = 4), Con (n = 4) and Inh (n = 4) mice. The monoclonal anti-Kv4.2 and anti-KChIP2 and the polyclonal anti-Kv4.3 antibodies used in these experiments have been described previously,\(^8\)\(^9\)\(^10\) and the anti-Kir2.1 antibody was obtained from Chemicon. For Western blot analyses, equal amounts of ventricular proteins (50\(\mu\)g) were fractionated on (8\% or 12\%) SDS-PAGE gels, transferred to PVDF membranes, followed by overnight incubation at 4\(^{\circ}\)C with the anti-Kv4.2, anti-Kv4.3 or anti-KChIP2, or anti-Kir2.1 antibody (at 0.5 to 1\(\mu\)g/ml).\(^9,\(^10\)\) In addition, each of these incubation solutions contained a monoclonal anti-\(\beta\)-actin antibody (at 1 \(\mu\)g/ml) (Sigma) as an internal control. Following washing, the membranes were incubated with an
alkaline phosphatase-conjugated goat-anti-mouse secondary antibody. The secondary incubation solution for membranes incubated with the polyclonal anti-Kv4.3 antibody also contained an alkaline phosphatase-conjugated goat-anti-rabbit antibody. Bound antibodies were detected using CPSD (Tropix), a chemiluminescent alkaline phosphatase substrate and, after washing to remove excess substrate, the membranes were exposed to x-ray film (Kodak). Films from individual experiments were scanned.

CaV1.2 immunoblotting

100 mg heart tissue was frozen and pulverized in a cylindrical steel mortar and pestle precooled with liquid nitrogen for immunoblotting, as described. The powdered heart tissue was resuspended and homogenized in 1 ml 1% Triton X 100 containing 20 mM EDTA, 10 mM EGTA, 10 mM Tris-Cl, pH 7.4. Protease inhibitors (1 µg/ml pestatin A, 10 µg/ml leupeptin, 20 µg/ml aprotinin, 200 nM phenylmethanesulfonylfluoride, 8 µg/ml calpain inhibitor I, 8 µg/ml calpain inhibitor II) and phosphatase inhibitors (1 mM parannitrophenylphosphate, 2 µM microcystine LR, 25 mM NaF, 25 mM Na-pyrophosphate) were present throughout the procedure. After clearing the extracts from any non-soluble material by ultracentrifugation, CaV1.2 was immunoprecipitated with an antibody against loop II and analyzed by immunoblotting with the phosphospecific antibody against serine 1928 as described in more detail elsewhere.

qRT PCR

Hearts were excised from 10-12 week-old male and female WT (n = 6) and PLN-/- (n=6), as well as from mice expressing either the CaMKII Inh (ACS-I) or Con (ACS-C) peptide in the WT and PLN-/- backgrounds (n = 6 for each genotype). All animals were sacrificed by cervical dislocation, and the hearts were rapidly removed. Ventricles were dissected from each heart and flash-frozen in liquid nitrogen for further RNA isolation. Total RNA was isolated and DNase treated using the RNeasy Fibrous Tissue Mini Kit (Qiagen). The quality of total RNA was assessed by gel electrophoresis. Genomic DNA contamination was assessed by PCR amplification of total RNA samples without prior cDNA synthesis; no genomic DNA was detected.

First strand cDNA was synthesized from 2 µg of total RNA using the High-Capacity cDNA Archive Kit (Applied Biosystems). The expression levels of genes encoding the K+ channel subunits Kv1.5, Kv2.1, Kv4.2, Kv4.3, Kir2.1, Kir2.2, KChIP2 and Kvβ1, as well as the gene encoding the hypertrophy markers atrial natriuretic factor (ANF) and β-myosin heavy chain (β-MHC), were determined by quantitative real-time PCR using 1 X SYBR Green PCR Master Mix (Applied Biosystems). PCR reactions were performed on 10 ng of cDNA using sequence specific primer pairs (Supplementary Table 1) on the ABI PRISM 7900HT Sequence Detection System. The cycling conditions included a hot start at 95°C for 10 min, followed by 40 cycles at 95°C for 15 seconds and 60°C for 1 min. All primer pairs were tested using mouse cDNA as the template, and templates giving 90-100% efficacy were chosen. In all cases, a single amplicon of the appropriate melting temperature or size was detected using the dissociation curve or gel electrophoresis, respectively.
Data were collected with instrument spectral compensations using the Applied Biosystems SDS 2.2.2 software and analyzed using the comparative threshold cycle (C_T) relative quantification method.13 The Hypoxanthine phosphoribosyl-transferase I (HPRT I) gene was used as an endogenous control to normalize the data. Individual sample measurements (n = 6) were averaged and 2^{-\Delta C_T} values for each gene, corresponding to the relative expression level of that gene compared with HPRT,2 were calculated and are reported here. C_T values for all of the genes studied and analyzed here were < 32.

Negative control experiments using RNA samples incubated without reverse transcriptase during cDNA synthesis showed no amplification.

Reference List

Supplementary Figure 1 Heart rates and PR intervals

Summary data for RR (a) and PR (b) intervals from Langendorff-perfused hearts shown in Fig 1b-c for WT, Inh and Con mice. †P<0.001. Summary data for RR (c) and PR (d) intervals from WT, Inh and Con mice recorded in vivo from mice shown in Fig 1g-h. *P<0.05.

Supplementary Figure 2 qRT PCR for hypertrophy marker genes

a. ANF and (b) β-MHC expression levels are not elevated in the ventricles of Inh (n = 9), compared with WT (n=9) and Con (n=9) ventricles.

Supplementary Figure 3 Acute CaMKII inhibition does not increase I_{K1} or I_{tof}

Amplitude of I_{K1} recorded at -60 mV (a) and -100 mV (b). c. The slope conductance of I_{K1} at the K^+ reversal potential. d. Peak I_{tof} recorded at +80 mV. All data are from wild
type ventricular myocytes after 10 min dialysis without peptide, with the CaMKII inhibitory peptide AC3-I or the inactive control peptide AC3-C. The number of cells studied in each group are shown in parentheses in panel a. There were no significant differences between groups in panels a – d.

Supplementary Figure 4 qRT PCR for hypertrophy marker genes

a. ANF and (b) β–MHC expression levels are not significantly increased in the ventricles of Inh x PLN+/+ (n = 6), compared with PLN+/+ (n=6) and Con x PLN+/+ (n=6) ventricles.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer 1</th>
<th>Primer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNA5 (Kv1.5)</td>
<td>5’-CCTGCAGAAGCTCTGATATGC 5’-TGCCTCGATCTCTTTTACAAATCT</td>
<td></td>
</tr>
<tr>
<td>KCNB1 (Kv2.1)</td>
<td>5’-CACACAGCAATAGCGTCACTT 5’-AGCGGTAGACACAGTCTTGCCG</td>
<td></td>
</tr>
<tr>
<td>KCND2 (Kv4.2)</td>
<td>5’-GCCGCAGCACCACCTAGCGTT 5’-CAACGAGCGATGATCTCATGA</td>
<td></td>
</tr>
<tr>
<td>KCND3 (Kv4.3)</td>
<td>5’-CCTAGCTCCAGCGGACAAGA 5’-CCACTTACGTTGAGGACGATCA</td>
<td></td>
</tr>
<tr>
<td>KCNJ2 (Kir2.1)</td>
<td>5’-AAGAGCCACCTTTGAGGAAGCT 5’-CCTTCTGAGTGTCTAGATTTGAGA</td>
<td></td>
</tr>
<tr>
<td>KCNJ12 (Kir2.2)</td>
<td>5’-AGCACCACTGACCACAAT 5’-CTGAGCAACCCCTACCCCA</td>
<td></td>
</tr>
<tr>
<td>KCNIP2 (KChIP2)</td>
<td>5’-GGCTGTATCACGAAGGAAAGGA 5’-CCGTCCTTGTTTCTGTCCATC</td>
<td></td>
</tr>
<tr>
<td>KCNAB1 (Kvβ1)</td>
<td>5’-AAATACCCAGAAAGGCAAGTGT 5’-ATCTAGCATGTGCCGAGGAA</td>
<td></td>
</tr>
<tr>
<td>ANF (ANF)</td>
<td>5’-CACTGTGGCCTGGCTGAACA 5’-TCGTGATAGTAGGAGGAGGAA</td>
<td></td>
</tr>
<tr>
<td>MYH7 (β-MHC)</td>
<td>5’-TGAATGACAGGGAGAGGCAAGGA 5’-CTGGCTGAGGTAGTCATTGA</td>
<td></td>
</tr>
<tr>
<td>HPRT</td>
<td>5’-TGAATCAGTTTGTGTCTATTAGTGA 5’-TTCAACTTGCCTCATCTTAGG</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Fig 1

(a) RR (ms) for WT, Inh, and Con groups.
(b) PR (ms) for WT, Inh, and Con groups.
(c) RR (ms) for WT, Inh, and Con groups.
(d) PR (ms) for WT, Inh, and Con groups.
Supplementary Fig 2

(a) ANF mRNA Relative expression

W T Inh Con

(b) βMHC mRNA Relative expression

W T Inh Con
Supplementary Fig 3

(a)
IK₁ (pA/pF)
Vm = -60 mV

(22) (17) (16)

(b)
IK₁ (pA/pF)
Vm = -100 mV

(c)
IK₁ slope (pS/pF)
Vm = Erev

(d)
I₀₋₁ (pA/pF)
Vm = +80 mV

No peptide AC3-I AC3-C
Supplementary Fig 4

(a) ANF mRNA Relative expression

(b) βMHC mRNA Relative expression

Samples: PLN-/-, Inh x PLN-/-, Con x PLN-/-