Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Impact Factor 13.965
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Circulation Research

  • My alerts
  • Sign In
  • Join

  • Impact Factor 13.965
  • Facebook
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Poster Abstract PresentationsSession Title: Poster Session 3

Abstract 352: Dual Specificity Phosphatase 8 (dusp8) Regulates Cardiac Remodeling and Function by Affecting Erk1/2 Phosphorylation

Ruijie Liu, Jeffery Molkentin
Circulation Research. 2015;117:A352
Ruijie Liu
Cincinnati Children’s Hosp Med Cntr, Cincinnati, OH
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffery Molkentin
Cincinnati Children’s Hosp Med Cntr, Cincinnati, OH
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

Rationale: Mitogen-activated protein kinases (MAPKs) are activated in the heart by various stress-inducing stimuli, where they participate in cardiac hypertrophy, contractility, and cell death. A family of dual-specificity phosphatases (DUSPs) directly inactivates each of the MAPK terminal effectors, thus providing a feedback mechanism to regulate the activity and recycling of MAPKs. How DUSPs regulate MAPK signaling to influence cardiac function is not well understood.

Objective: To determine the role of DUSP8 in regulating MAPK signaling and the effect on cardiac disease.

Methods and Results: We generated DUSP8 null (KO) and inducible cardiac specific DUSP8 transgenic mice to assess the effect on cardiac structure-function at baseline and with stress-responsiveness. Loss of DUSP8 did not alter cardiac structure-function or MAPK phosphorylation at baseline. However, with pressure overload or myocardial infarction injury, DUSP8 KO mice developed concentric hypertrophy with preserved cardiac function compared to wild type controls, suggesting a cardioprotective role for loss of DUSP8. DUSP8 transgenic mice developed cardiac hypertrophy at baseline as evidenced by elevated expression of hypertrophic marker genes as well as increased heart weights and cross sectional area of the myocytes. DUSP8 transgenic mice also had mild interstitial fibrosis and reduced fractional shortening. Biochemical analysis of MAPK phosphorylation demonstrated increased ERK phosphorylation in KO mice upon stress, suggesting a molecular mechanism underlying the increased concentric growth of DUSP8 KO cardiomyocytes.

Conclusions: Taken together, these data demonstrate that DUSP8 modulates ERK phosphorylation to influence cardiomyocyte growth and consequent cardiac function with injury. Further analysis of MAPK phosphorylation in DUSP8 transgenic mice will provide more insight into DUSP8-ERK signaling in the heart.

  • cardiac remodeling
  • Dual specificity phosphatase 8
  • MAPK
  • Author Disclosures: R. Liu: None. J. Molkentin: None.

  • © 2015 by American Heart Association, Inc.
Back to top
Previous Article

This Issue

Circulation Research
July 17, 2015, Volume 117, Issue Suppl 1
  • Table of Contents
Previous Article

Jump to

  • Article
  • Info & Metrics

Article Tools

  • Citation Tools
    Abstract 352: Dual Specificity Phosphatase 8 (dusp8) Regulates Cardiac Remodeling and Function by Affecting Erk1/2 Phosphorylation
    Ruijie Liu and Jeffery Molkentin
    Circulation Research. 2015;117:A352, originally published October 21, 2015

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Circulation Research.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Abstract 352: Dual Specificity Phosphatase 8 (dusp8) Regulates Cardiac Remodeling and Function by Affecting Erk1/2 Phosphorylation
    (Your Name) has sent you a message from Circulation Research
    (Your Name) thought you would like to see the Circulation Research web site.
  • Share on Social Media
    Abstract 352: Dual Specificity Phosphatase 8 (dusp8) Regulates Cardiac Remodeling and Function by Affecting Erk1/2 Phosphorylation
    Ruijie Liu and Jeffery Molkentin
    Circulation Research. 2015;117:A352, originally published October 21, 2015
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Circulation Research

  • About Circulation Research
  • Editorial Board
  • Instructions for Authors
  • Abstract Supplements
  • AHA Statements and Guidelines
  • Permissions
  • Reprints
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
3355 Keswick Rd
Main Bldg 103
Baltimore, MD 21211
CircRes@circresearch.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured