Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Impact Factor 13.965
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Circulation Research

  • My alerts
  • Sign In
  • Join

  • Impact Factor 13.965
  • Facebook
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Poster Abstract PresentationsSession Title: Poster Session 3

Abstract 300: The Actin Cytoskeleton Confers Specificity of Cx43 Delivery to Intercalated Discs

Shan-Shan Zhang, SoonGweon Hong, Luke P Lee, Robin M Shaw
Circulation Research. 2014;115:A300
Shan-Shan Zhang
Cedars-Sinai Heart Institute, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SoonGweon Hong
Univ of California, Berkeley, Berkely, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luke P Lee
Univ of California, Berkeley, Berkely, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robin M Shaw
Cedars-Sinai Heart Institute, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

Connexin 43 (Cx43) gap junctions (GJs) electrically couple ventricular cardiomyocytes at the intercalated disc (ID), orchestrating organized organ level contraction with each heartbeat. Disease-related disruption of the Cx43 cytoskeletal trafficking machinery is associated with mislocalization of the Cx43 gap junction protein away from the ID and lethal arrhythmias. We recently found that the majority of intracellular Cx43 cargo is associated with actin, not microtubules, and is either paused or moving slowly. It is not understood why actin is involved in Cx43 trafficking. Using micropatterned HeLa cell pairs and whole-cell automated single particle tracking algorithms, we detected that distinct actin polarity exists in the cell, including highly oriented long fibers associated with fast-moving Cx43 cargo aligned toward actively forming GJ plaques. F-actin disruption with latrunculin A (LatA) leads to a loss of Cx43 cargo directionality toward the cell-cell border, as well as a marked decrease in overall microtubule length. We also found a LatA-dependent biochemical interaction between β-actin and the microtubule plus-end-binding protein EB1, which leads growing microtubules and is a necessary component of the Cx43 forward trafficking machinery. In live cell pairs, F-actin disruption resulted in a decrease in overall EB1 activity and in the number of fully extended microtubules that reach the cell-cell border. Together, these results indicate that actin contributes to the specificity of Cx43 delivery by directing EB1-based microtubule growth toward the cell-cell junction (Please refer to attached diagram).


Embedded Image
  • Connexin
  • Ion channels
  • Tissue engineering
  • Author Disclosures: S. Zhang: None S. Hong: None L.P. Lee: None R.M. Shaw: None.

  • This research has received full or partial funding support from the American Heart Association, Western States Affiliate (California, Nevada & Utah).

  • © 2014 by American Heart Association, Inc.
Back to top
Previous Article

This Issue

Circulation Research
July 18, 2014, Volume 115, Issue Suppl 1
  • Table of Contents
Previous Article

Jump to

  • Article
  • Info & Metrics

Article Tools

  • Citation Tools
    Abstract 300: The Actin Cytoskeleton Confers Specificity of Cx43 Delivery to Intercalated Discs
    Shan-Shan Zhang, SoonGweon Hong, Luke P Lee and Robin M Shaw
    Circulation Research. 2014;115:A300, originally published November 6, 2014

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Circulation Research.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Abstract 300: The Actin Cytoskeleton Confers Specificity of Cx43 Delivery to Intercalated Discs
    (Your Name) has sent you a message from Circulation Research
    (Your Name) thought you would like to see the Circulation Research web site.
  • Share on Social Media
    Abstract 300: The Actin Cytoskeleton Confers Specificity of Cx43 Delivery to Intercalated Discs
    Shan-Shan Zhang, SoonGweon Hong, Luke P Lee and Robin M Shaw
    Circulation Research. 2014;115:A300, originally published November 6, 2014
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Circulation Research

  • About Circulation Research
  • Editorial Board
  • Instructions for Authors
  • Abstract Supplements
  • AHA Statements and Guidelines
  • Permissions
  • Reprints
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
3355 Keswick Rd
Main Bldg 103
Baltimore, MD 21211
CircRes@circresearch.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured