Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Impact Factor 13.965
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Circulation Research

  • My alerts
  • Sign In
  • Join

  • Impact Factor 13.965
  • Facebook
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Poster Abstract PresentationsSession Title: Poster Session 3

Abstract 239: Selective Class I and II Histone Deacetylation Inhibitors Alter Stability of HDAC-Corepressor Complexes

Hsiao C Wang, Lillianne G Harris, James C Chou, Santhosh Mani, Donald Menick
Circulation Research. 2014;115:A239
Hsiao C Wang
Med Univ of South Carolina, Charleston, SC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lillianne G Harris
Med Univ of South Carolina, Charleston, SC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James C Chou
Med Univ of South Carolina, Charleston, SC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Santhosh Mani
Med Univ of South Carolina, Charleston, SC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald Menick
Med Univ of South Carolina, Charleston, SC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

Introduction: Alterations in expression and activity of different genes have been implicated in the pathogenesis of heart failure. Our lab has shown that HDAC-repressor complexes play a critical role in the upregulation Sodium Calcium Exchanger (Ncx1) and HDAC inhibition causes changes that attenuated cardiac remodeling during cardiac hypertrophy and heart failure. Thus, treatment with HDAC inhibitors has been proposed as a potential strategy for treatment of cardiac hypertrophy and heart failure. HDAC inhibitors repress deacetylase activity but we propose that they also affect HDAC confirmation and interaction with other protein factors. We hypothesize that HDAC inhibitors affect the stability of the co-repressor complex with specific transcription factors and that this effect is dependent on the transcription factor.

Results: Inhibition of HDACs in adult cardiomyocytes results in the greater stabilization of HDACs with co-repressor molecules that were recruited to the NCX1 promoter through Nkx2.5 transcription factor. HDAC class I specific inhibitor, MS 275 demonstrated stronger association between HDACs and co-repressors while other Class I inhibitors, PD106 and BML 210 failed on showing this phenomenal. The results suggested that class I HDACs inhibitors may affect formations of HDAC-complex via alternated active site interactions other than chelating with zinc binding domain. These results compliment ChIP experiments which also demonstrate the different recruitments of Sin3a at the proximal promoter of NCX1. In vivo analysis on HDAC5 knockout mice reveal that the Sin3a-HDAC1/2 repressor complex is not recruited to the Ncx1 promoter in the absence of HDAC5, indicating not only Class I HDAC but also Class II HDACs play an important role on HDAC-complex formation.

Conclusions: This work gives insight into part of the molecular mechanism of how HDAC inhibitors can affect the stability of the HDAC co-repressor complex in cardiac hypertrophy and heart failure. In addition, we demonstrated the Class IIa HDACs are required for the recruitment of the Sin3a/HDAC1/2 co-repressor complex to specific transcription factors on the target promoter.

  • Molecular biology
  • Hypertrophy
  • Heart failure
  • Author Disclosures: H.C. Wang: None L.G. Harris: None J.C. Chou: None S. Mani: None D. Menick: None.

  • © 2014 by American Heart Association, Inc.
Back to top
Previous Article

This Issue

Circulation Research
July 18, 2014, Volume 115, Issue Suppl 1
  • Table of Contents
Previous Article

Jump to

  • Article
  • Info & Metrics

Article Tools

  • Citation Tools
    Abstract 239: Selective Class I and II Histone Deacetylation Inhibitors Alter Stability of HDAC-Corepressor Complexes
    Hsiao C Wang, Lillianne G Harris, James C Chou, Santhosh Mani and Donald Menick
    Circulation Research. 2014;115:A239, originally published November 6, 2014

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Circulation Research.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Abstract 239: Selective Class I and II Histone Deacetylation Inhibitors Alter Stability of HDAC-Corepressor Complexes
    (Your Name) has sent you a message from Circulation Research
    (Your Name) thought you would like to see the Circulation Research web site.
  • Share on Social Media
    Abstract 239: Selective Class I and II Histone Deacetylation Inhibitors Alter Stability of HDAC-Corepressor Complexes
    Hsiao C Wang, Lillianne G Harris, James C Chou, Santhosh Mani and Donald Menick
    Circulation Research. 2014;115:A239, originally published November 6, 2014
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Circulation Research

  • About Circulation Research
  • Editorial Board
  • Instructions for Authors
  • Abstract Supplements
  • AHA Statements and Guidelines
  • Permissions
  • Reprints
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
3355 Keswick Rd
Main Bldg 103
Baltimore, MD 21211
CircRes@circresearch.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured