Skip to main content
  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
  • Impact Factor 13.965
  • Facebook
  • Twitter

  • My alerts
  • Sign In
  • Join

  • Advanced search

Header Publisher Menu

  • American Heart Association
  • Science Volunteer
  • Warning Signs
  • Advanced Search
  • Donate

Circulation Research

  • My alerts
  • Sign In
  • Join

  • Impact Factor 13.965
  • Facebook
  • Twitter
  • Home
  • About this Journal
    • Editorial Board
    • Meet the Editors
    • Editorial Manifesto
    • Impact Factor
    • Journal History
    • General Statistics
  • All Issues
  • Subjects
    • All Subjects
    • Arrhythmia and Electrophysiology
    • Basic, Translational, and Clinical Research
    • Critical Care and Resuscitation
    • Epidemiology, Lifestyle, and Prevention
    • Genetics
    • Heart Failure and Cardiac Disease
    • Hypertension
    • Imaging and Diagnostic Testing
    • Intervention, Surgery, Transplantation
    • Quality and Outcomes
    • Stroke
    • Vascular Disease
  • Browse Features
    • Circulation Research Profiles
    • Trainees & Young Investigators
    • Research Around the World
    • News & Views
    • The NHLBI Page
    • Viewpoints
    • Compendia
    • Reviews
    • Recent Review Series
    • Profiles in Cardiovascular Science
    • Leaders in Cardiovascular Science
    • Commentaries on Cutting Edge Science
    • AHA/BCVS Scientific Statements
    • Abstract Supplements
    • Circulation Research Classics
    • In This Issue Archive
    • Anthology of Images
  • Resources
    • Online Submission/Peer Review
    • Why Submit to Circulation Research
    • Instructions for Authors
    • → Article Types
    • → Manuscript Preparation
    • → Submission Tips
    • → Journal Policies
    • Circulation Research Awards
    • Image Gallery
    • Council on Basic Cardiovascular Sciences
    • Customer Service & Ordering Info
    • International Users
  • AHA Journals
    • AHA Journals Home
    • Arteriosclerosis, Thrombosis, and Vascular Biology (ATVB)
    • Circulation
    • → Circ: Arrhythmia and Electrophysiology
    • → Circ: Genomic and Precision Medicine
    • → Circ: Cardiovascular Imaging
    • → Circ: Cardiovascular Interventions
    • → Circ: Cardiovascular Quality & Outcomes
    • → Circ: Heart Failure
    • Circulation Research
    • Hypertension
    • Stroke
    • Journal of the American Heart Association
Poster Abstract Presentations

Abstract 097: Recombinant Human Erythropoietin Prevents Reactive Oxygen Species - Induced Apoptosis Via Akt and p38 MAPK Pathway During Hypoxia/ Reperfusion Injury

Asiya Parvin Allaudeen, Ajay Devendran, John E Baker, Anuradha Dhanasekaran
Circulation Research. 2013;113:A097
Asiya Parvin Allaudeen
Anna Univ, Chennai, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ajay Devendran
Anna Univ, Chennai, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John E Baker
Med College of Wisconsin, Milwaukee, WI
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anuradha Dhanasekaran
Anna Univ, Chennai, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics

Jump to

  • Article
  • Info & Metrics
  • eLetters
Loading

Abstract

Erythropoietin (EPO) is a cytokine produced primarily in the kidney that is essential for red blood cell production. Apart from playing a role in hematopoiesis, EPO also has a protective role in heart myocytes, ovarian, glial cells brain and retinal diseases. In this study we observed that recombinant human EPO (rhEPO) reduces Hypoxia/ Reperfusion (H/R) injury by virtue of its effect on EPO receptor prosurvival signaling pathway, which ultimately leads to reduced expression of apoptotic proteins and increased survival of cardiomyocytes. H9C2 cells were exposed to H/R with or without pretreatment using 10, 15 and 20 U/ml of rhEPO. We determined viability using MTT, nuclear fragmentation by Hoechst staining, apoptotic nuclei by Acridine orange and Ethidium bromide, Reactive Oxygen Species (ROS) by Dicholorofluoresin Diacetate and activity of late apoptotic protease, Caspase-3 by colorimetric Caspase-3 assay. The expression of mitochondrial superoxide dismutase (MnSOD) by RT-PCR and Western blot, phospho-Akt and p38 MAPK by Confocal microscopy were analyzed. Cell viability is increased in cells pretreated with rhEPO compared to cell exposed to H/R. Cells subjected to H/R showed early apoptotic and late apoptotic cells but showed normal nuclei with intact cell membrane in cells pretreated with rhEPO. Intracellular production of ROS and Caspase-3 activity was decreased in cells pretreated with rhEPO compared to cells exposed to H/R. The expression of MnSOD RNA and protein was up-regulated in response to rhEPO, but not in H/R. The phosphorylative activation of Akt, p38MAPK progressively diminished during H/R but increased in rhEPO pretreated cells. We show that rhEPO prevents apoptosis in cardiomyocytes, subjected to H/R injury via phosphorylation of Akt and p38MAPK. These results it is hoped would help us distinguish the cell signaling pathways involved in cardioprotection and thus would open new avenues in cardiovascular therapy.

  • Hypoxia/Reperfusion injury
  • Apoptosis
  • Cardiomyocytes
  • © 2013 by American Heart Association, Inc.
Back to top
Previous Article

This Issue

Circulation Research
August 2013, Volume 113, Issue Suppl 1
  • Table of Contents
Previous Article

Jump to

  • Article
  • Info & Metrics

Article Tools

  • Citation Tools
    Abstract 097: Recombinant Human Erythropoietin Prevents Reactive Oxygen Species - Induced Apoptosis Via Akt and p38 MAPK Pathway During Hypoxia/ Reperfusion Injury
    Asiya Parvin Allaudeen, Ajay Devendran, John E Baker and Anuradha Dhanasekaran
    Circulation Research. 2013;113:A097, originally published October 8, 2015

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
  • Article Alerts
    Log in to Email Alerts with your email address.
  • Save to my folders

Share this Article

  • Email

    Thank you for your interest in spreading the word on Circulation Research.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Abstract 097: Recombinant Human Erythropoietin Prevents Reactive Oxygen Species - Induced Apoptosis Via Akt and p38 MAPK Pathway During Hypoxia/ Reperfusion Injury
    (Your Name) has sent you a message from Circulation Research
    (Your Name) thought you would like to see the Circulation Research web site.
  • Share on Social Media
    Abstract 097: Recombinant Human Erythropoietin Prevents Reactive Oxygen Species - Induced Apoptosis Via Akt and p38 MAPK Pathway During Hypoxia/ Reperfusion Injury
    Asiya Parvin Allaudeen, Ajay Devendran, John E Baker and Anuradha Dhanasekaran
    Circulation Research. 2013;113:A097, originally published October 8, 2015
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo

Related Articles

Cited By...

Circulation Research

  • About Circulation Research
  • Editorial Board
  • Instructions for Authors
  • Abstract Supplements
  • AHA Statements and Guidelines
  • Permissions
  • Reprints
  • Email Alerts
  • Open Access Information
  • AHA Journals RSS
  • AHA Newsroom

Editorial Office Address:
3355 Keswick Rd
Main Bldg 103
Baltimore, MD 21211
CircRes@circresearch.org

Information for:
  • Advertisers
  • Subscribers
  • Subscriber Help
  • Institutions / Librarians
  • Institutional Subscriptions FAQ
  • International Users
American Heart Association Learn and Live
National Center
7272 Greenville Ave.
Dallas, TX 75231

Customer Service

  • 1-800-AHA-USA-1
  • 1-800-242-8721
  • Local Info
  • Contact Us

About Us

Our mission is to build healthier lives, free of cardiovascular diseases and stroke. That single purpose drives all we do. The need for our work is beyond question. Find Out More about the American Heart Association

  • Careers
  • SHOP
  • Latest Heart and Stroke News
  • AHA/ASA Media Newsroom

Our Sites

  • American Heart Association
  • American Stroke Association
  • For Professionals
  • More Sites

Take Action

  • Advocate
  • Donate
  • Planned Giving
  • Volunteer

Online Communities

  • AFib Support
  • Garden Community
  • Patient Support Network
  • Professional Online Network

Follow Us:

  • Follow Circulation on Twitter
  • Visit Circulation on Facebook
  • Follow Circulation on Google Plus
  • Follow Circulation on Instagram
  • Follow Circulation on Pinterest
  • Follow Circulation on YouTube
  • Rss Feeds
  • Privacy Policy
  • Copyright
  • Ethics Policy
  • Conflict of Interest Policy
  • Linking Policy
  • Diversity
  • Careers

©2018 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited. The American Heart Association is a qualified 501(c)(3) tax-exempt organization.
*Red Dress™ DHHS, Go Red™ AHA; National Wear Red Day ® is a registered trademark.

  • PUTTING PATIENTS FIRST National Health Council Standards of Excellence Certification Program
  • BBB Accredited Charity
  • Comodo Secured